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STUDIES OF SECOND- AND TH7RD-ORDER CONTACTOR 

CONTROL SYSTEMS 

By Irmgard F l u g e - h t z  and Herbert E. Lindberg 

SUMMARY 

The majority of t h i s  paper i s  devoted t o  the study of the  response 
of second- and third-order contactor systems w i t h  l ineax switching, t h a t  
is, Switching according t o  the  sign of a l i nea r  combination of the e r r o r  
and i t s  derivatives.  
a simplified equation of the  pitching motion of a missi le  whose control  
surface takes on only two positions, f u l l  up o r  f u l l  down. 
formance of these systems during chat ter  operation and during t h e i r  
response t o  s tep  inputs i s  studied i n  great  d e t a i l .  

The example chosen fo r  the third-order system is  

The per- 

The r e su l t s  show t h a t  f o r  cer ta in  ra ther  wide ranges of combinatibns 
of na tura l  damping of the  controlled process and s tep  input amplitude, 
there  is very l i t t l e  difference between optimum and l i n e a r  switching 
response. 
optimum response can be obtained without using a complicated optimum 
switching function, a quasi-optimum switching function i s  suggested which 
requires only a two-dimensional function generator. Experiments showed 
t h a t  the response w i t h  t h i s  switching function w a s  very nearly optbum 
for a wide range of s tep  inputs. 

In order t o  extend the  range of s tep inputs f o r  which nearly 

INTRODUCTION 

A control  system containing one o r  more on-off devices i s  cal led 
a relay or  contactor control system. 
i n  the system is  much less expensive and l e s s  complicated because a 
re lay  can control  large amounts of p o w e r  by ra ther  simple m e a n s .  
the  other hand, the output of a relay i s  not proportional t o  the input; 
t h a t  i s ,  the  input-output re la t ion  i s  not l inear ,  and the  behavior of 
a re lay  control system cannot be analyzed by a l i n e a r  theory. 
t he  rapid type of operation of a contactor system makes it i n f e r i o r  t o  
the  smooth proportional act ion of a l i nea r  system. 
t ions ,  however, the  sudden accelerations and high-frequency cha t te r  

In  most cases, the  use of a r e l ay  

On 

Also, 

I n  many applica- 



caused by the re lay  are not objectionable because of the f i l t e r i n g  act ion 
of the r e s t  of the system. In  f ac t ,  i n  recent years a great  deal of work 
has been done on lloptimuml' contactor systems which give the f a s t e s t  pos- 
s i b l e  response t o  s tep  inputs, and i n  t h i s  respect the contactor system 
becomes superior t o  a l i nea r  system with the same sa tura t ion  values. 

E a r l i e r  work ( r e f .  1) reported invest igat ion of the  p rac t i ca l  use 
of adding discontinuous feedback t o  a second-order control  system. 
feedback provided a means of discontinuously varying the coef f ic ien ts  
of the  d i f f e r e n t i a l  equation of the uncontrolled process so t h a t  an 
ensemble of e ight  l i nea r  d i f f e r e n t i a l  equations w a s  obtained. 
en t  paper compares such a scheme with the more conventional discontinuous 
control systems i n  which the forcing term of the  d i f f e r e n t i a l  equation 
is  switched discontinuously. I n  making t h i s  comparison, the similari- 
t i e s  of contactor systems designed by phase-plane and frequency-response 
methods are pointed out. 

This 

The pres- 

A well designed contactor system chat te rs  during a large par t  of 
t he  operation because of imperfections i n  the switching device. Two 
types of error t h a t  a r i s e  during t h i s  cha t te r  operation are  studied i n  
d e t a i l  for second- and third-order systems w i t h  l i n e a r  switching, t h a t  
is, switching according t o  the  sign of a l i neas  combination of t he  e r r o r  
and i t s  derivatives.  
cha t te r  e r ro r  i t s e l f .  Approximate equations f o r  this e r ro r  as a func- 
t i o n  of the input and of the re lay  imperfections axe derived f o r  small 
relay-time delays or thresholds occurring separately.  Analog-computer 
experiments, made t o  check these expressions under various conditions, 
agreed very well with the  theory. The second type of e r ro r  occurs at 
the  same frequency as the input and i s  caused by the  f i l t e r i n g  delays 
encountered i n  forming the  e r ro r  der ivat ives  used i n  the  switching func- 
t i on .  
computer experiments give good agreement with this theory. In Laplace 
transform notation, this theory gives an equivalent l i n e a r  t r ans fe r  
function f o r  the  system operating i n  the  presence of re lay  cha t te r .  
Therefore, although most of t he  experiments were made with sinusoidal 
inputs, the resu l t ing  theory i s  va l id  f o r  general  inputs because the  
l a w  of superposition holds. This approach i s  somewhat similar t o  the 
m e t h d  of Lozier (see r e f .  2), who replaced the  r e l ay  with an equivalent 
amplifier during cha t te r  operation. However, t he  equivalent t r ans fe r  
function given here is  f o r  a system with a d i f f e ren t  type of feedback 
and i s  essent ia l ly  d i f f e ren t  from LOzier's so lu t ion  i n  that t h i s  t rans-  
f e r  function depends mainly on the  l i nea r  switching function and i t s  
associated f i l ters,  while the  d i f f e r e n t i a l  equation of the  controlled 
process determines only the  range of inputs f o r  which t h i s  theory applies.  

The first type of e r ro r  is  the  high-frequency 

A simple theory i s  given t o  explain these e r ro r s  and %&in analog- 

The main bulk of the  work above w a s  done on systems with l i nea r  
However, a switching, which were found t o  give qui te  good response. 
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great  deal  of work has been done by va-ious people i n  recent years on 
what i s  cal led optimum curitactor S ’ J ’ Z ~ ~ K E .  These systems give the  mini- 
mum response time f o r  s tep inputs and are  therefore  superior t o  systems 
with l i nea r  switching. The hardware necessary t o  form the  optimum three- 
dimensional switching surface ( fo r  a third-order system) i s  a great  deal  
more complicated than the simple d i f fe ren t ia t ion  c i r c u i t s  required f o r  
l i nea r  pwitching. The obvious question is, how much i s  l o s t  i n  perform- 
ance i f  one chooses t o  use the more economical l i n e a r  switching function? 
To give a p a r t i a l  answer t o  this question, the  s tep  response of a third-  
order system with two complex roots  and l i nea r  switching i s  compared 
with t h a t  of the  same system operating with optimum switching, using an 
analog-computer simulation. 

This investigation w a s  conducted at  Stanford University under the 
sponsorship and with the f inanc ia l  assistance of the  National Advisory 
Committee f o r  Aeronautics. The authors wish t o  thank Dr. A. M .  Peterson 
of the E lec t r i ca l  Engineering Department, Stanford University, f o r  h i s  
continued i n t e r e s t  and h i s  most helpful advice on the  electronic  prob- 
lems which were encountered during t h i s  invest igat ion.  

Some symbols have d i f fe ren t  meanings i n  d i f f e ren t  sections.  The 
context of the sect ion w i l l  give the reader the correct  choice. 

A amplitude of sinusoidal input 

AK ainplitude of sinusoidal input t o  re lay  (Kochenbwger) 

A,B,C,A1,B1,C1 constants i n  equations (131) and (134) 

a, “1, a2, bl,b2 driving terms for second-order systems 

C,  C19C23C3 integrat ion constants 

computer scale  f ac to r  on controlled variable,  third-order 
system 

ay 

C output of compensation network 

D damping fac tor  of second-order controlled process 

E e r r o r  (used i n  appendix A), y - x 
e e r r o r  (used throughout the t e x t ) ,  x - y 



peak value of symmetrical chatter error due to relay 
threshold imperfection 

peak value of symmetrical chatter error due to relay 
time delay imperfection 

integration con st ant 

peak value of unsymmetrical chatter error due to relay 
threshold imperfection 

peak value of unsymmetrical chatter error due to time 
delay imperfection 

argument of switching function 

compensation network transfer function 

relay describing function 

controlled process transfer function 

vertical distance to peak error plotted in inclined 
coordinates 

used to simplify expressions, 

n 

parameter in linear switching function of a second-order 
system; generally, coefficient of e' 

coefficients of e' and e" respectively in linear 
switching function of a third-order system 

distance (see fig. 9) 

absolute values of driving terms of third-order system 

n = N J N ~  < 1 

W 
1 
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2@rl distance ex is t ing  between switching l i n e s  due t o  a relay 
time' delay bper fec i iu i i  

P 
d operator, - 
dT 

R output of re lay  (Kochenburger ) 

r radius from or ig in  of inclined phase-plane axes t o  s p i r a l  
t ra jec tory  

r f o r  T = 0 rO 

T half  period of symmetrical cha t te r  o sc i l l a t ions  

T 1  duration of application of a1 (second-order system) o r  

N1 (third-order system) per cycle of cha t t e r  

T2 duration of application of a2 (second-order system) or  

N2 (third-order system) per cycle of cha t te r  

TC t i m e  delay of Pad4 derived c i r c u i t  

Ti,Tli,T2i time constants of x '  and x" f i l t e r  c i r c u i t s  

L 
n 

TR re lay  tine delay imperfection 

c r i t i c a l  re lay  time- delay imperfect ion TRcr 

T X c  ,Ty' time lags of derivatives used i n  switching function 

t real time 

V r a  runaway veloci ty  of third-crder controlled process i n  
computer un i t s  
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runaway veloci ty  of third-order controlled process i n  V r a  
problem units 

X input variable,  computer un i t s  

xo 
X ' O  slope of ramp input 

Y controlled variable i n  computer o r  dedimensionalized un i t s  

alc constant of cmpensation network (Kochenburger ) 

ramp input 

a ,u l , q  phase angle lags of f i l t e r e d  quant i t ies  

s, = -18 s g n ( y ' 4  - 2B s d y ' e ' )  

E re lay  threshold imperfection 

%r c r i t i c a l  threshold imperfection 

c damping r a t i o  of third-order controlled process 

7 angle between switching l i n e  and e '  axis using inclined 
coordinates 

9 a i r c r a f t  pitching angle, measured from l e v e l  f l ight 

b h 2  scale f ac to r s  f o r  e r ro r  phase-plane axes 

p1  phase angle (see eq. (82)) 

e r r o r  i n  d is tor ted  phase planes El, 5 2 

P 

CJ 

radius  of curvature of s p i r a l s  at or igin,  a//= 

angle between inclined e r r o r  phase-plane coordinates, 
arc  cos(-D) 

W 
1 
1 
0 
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dedimensionalized or  computer time 

computer time fram start of i n t e rva l  T1 t o  poiui  of 
maximum chat ter  error,  third-order system 

constant of compensation network (Kochenburger) 

coeff ic ient  of f i l t e r e d  error  der ivat ive (Kochenburger), 

(1 - $)T 

fo r  %ax 

t i m e  of t r a v e l  on zero t ra jectory 

switching function, takes on only values +1 

controlled variable f r m  reference 3 

$ f o r  t = 0 

undamped na tura l  frequency of rapid incidence adjustment 
made by a i r c r a f t ,  l/sec 

na tura l  frequency of undamped t h i r d  order controlled 
process, computer units 

radian frequency, usually of input, computer un i t s  

breakdown frequency, computer un i t s  

frequency of cha t te r  osc i l la t ions  due t o  relay threshold 
imperfection, computer units 

scale  fac tor  i n  equation ( ~ 3 )  

frequency of cha t te r  osc i l la t ions  due t o  r e l ay  time-delay 
imperfection, computer un i t s  

) algebraic sign of a real  quantity; sgn f = 

( ) ’, ( )”, ( )”’ di f fe ren t ia t ion  with respect t o  T 
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f i l t e r e d  or  delayed quantity 

approximately equal t o  

CONSIDERATIONS FOR DESIGNING AND COMPARING CONTACTOR SYSTEMS 

There have been a great  number of papers wr i t ten  i n  recent years 
about different  types of contactor systems, but very l i t t l e  has been 
wr i t ten  about the r e l a t ive  merits of these various systems. In t h i s  
sect ion several d i f fe ren t  nonoptimum systems developed by very d i f f e ren t  
techniques w i l l  be compared i n  order t o  point out t h e i r  s i m i l a r i t i e s  and 

W 
1 
1 
0 

t o  determine which can be c l a s s i f i ed  as the  bes t  system. 

S imi la r i t i es  of Contactor Control Systems 

Phase-plane method. - One method of studying a contactor control  
system i s  t o  look d i r ec t ly  a t  i t s  t rans ien t  response i n  the  phase space. 
Consider, fo r  example, the second-order system studied by Fl'dgge-Lotz 
( r e f .  3 ) .  T h i s  i s  a zero-seeking device whose d i f f e r e n t i a l  equation 
i n  a dedimensionalized form i s  

Notice that,  i n  t h i s  system, the switching function i s  simply minus the  
sign of 
whether J I  + kJr' i s  plus cr minus. There are  systems with more com- 
p l ica ted  switching f m c t i o n s  t h a t  give optimum response ( r e f .  4) but 
f o r  the moment only those with l i nea r  switching functions w i l l  be con- 
sidered became they are  more eas i ly  real ized i n  an ac tua l  application. 

JI + kJi'; t h a t  is, it takes on the values -1 o r  1 depending on 

Since equation (1) describes a second-order system, the phase space 
becomes a phase plane as shown i n  f igure l ( a )  f o r  
ure l(b) for 
the  origin, and l i m i t  cycles of osc i l la tory  motion as shown i n  f igure l ( b )  
exis t  even f o r  the i d e a l  system. 
device performing the operation has no time delays, hys- 
t e r e s i s ,  or threshold imperfections. Figure 1 shows t h i s  type of oper- 
a t ion .  I n  all of the phase-plane drawings f o r  t h i s  system the Jr axis 
i s  inclined t o  the  J r '  axis by the angle CI = arc  cos(-D) as shown. 
Using such properly inclined axes, the authors of reference 5 show t h a t  
the phase-plane t r a j ec to r i e s  become logarithmic s p i r a l s  of the  form 

k > 0 and i n  f i g -  
k < 0. If k < 0, the t r a j e c t o r i e s  do not converge t o  

The i d e a l  system i s  one i n  which the 
sgn(Jr + k$' )  
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where r i s  measured from the point (0,41) depending on the  sign of 
VT is  the angle between two r a d i i  extending from (O,kl), and v = @-!%. 

The curve shown i n  f igure l(a) i s  a typica l  response t o  an in i t ia l  
e r r o r  and e r ro r  r a t e  represented by point P i  (since t h i s  i s  a zero-seeking 
device, the e r ro r  i s  iden t i ca l  with the controlled var iab le) .  
figure 2, which is  essent ia l ly  an enlarged view of pa r t  of f igure l (a) ,  
t h a t  f o r  the idea l  system of the  type k > 0 no motion i s  defined beyond 
point A. That is, only two t r a j ec to r i e s  pass through t h i s  point, namely, 
a rc  PAB f o r  # = 1 and a rc  CAD fo r  = -1; and the only paths leading 
out of point A are those toward B and D. 
the  path toward B because above the switching l i n e  Jr + kJr' = 0 equa- 
t i o n  (1) d ic t a t e s  t h a t  the switching function 
not proceed along the path toward D because below the  switching l i ne  
@ = 1. Any point such as A is  called an end point and occurs when a 
t r a j ec to ry  such a s  a rc  PAB in te rsec ts  t he  switching l i n e  twice i n  
succession on the same s ide of the  or igin.  Every path such as the one 
shown i n  f igure l ( a )  has an en6 point. 

Notice i n  

Motion cannot proceed along 

9 i s  -1; also,  motion can- 

If the device which forms the switching function (d i s  allowed t o  
have an imperfection such a s  a time delay, then the motion does not s tay  
a t  point A but proceeds t o  point E. Here @ can change t o  -1 then back 
t o  1, e tc . ,  and the motion proceeds toward the or ig in  as shown by the  
so l id  path. 
f e r e n t i a l  equation of t h i s  average motion i s  

The average path i s  along the  switching l i n e  and the d i f -  

J r + k J r ' = O  ( 3 )  

whence 

1 -- t 
Jr = lfp (4) 

Equation ( 4 )  shows t h a t  i n  the "end motion" tends toward zero expo- 
nent ia l ly .  A consideration of t h i s  motion alone would indicate  t h a t  k 
should be chosen small and positive. 
quickly from a point such as Pi i n  f igure l ( a )  t o  an end point, then it 
i s  advantageous t o  increase k.  
Pi, a compromise select ion of k can be made. 

Jr 

However, i f  motion i s  t o  proceed 

Depending on the posi t ion of the expected 

c 
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For study of response t o  s tep inputs, much of the  theory developed 
f o r  equation (1) can be extended t o  a followup system as shown i n  f ig -  
ure 3. The equation of t h i s  system i s  

y" + 2Dy' + y = sgn(e + k e f )  ( 5 )  

which can be wri t ten by subst i tut ing y = x - e as 

W 
1 
1 
0 

e" + 2De' + e = x - sgn(e + k e ' )  ( 6 )  

f o r  a step input where x" = x '  = 0. The presence of x a f f e c t s  the  
posi t ion of the f o c i  of the phase-plane s p i r a l s  indicated i n  f igure  l ( a )  . 

Kochenburger method.- Another method of approaching nonoptimum 
re lay  systems is presented by Kochenburger ( r e f .  6) .  
en t i r e ly  d i f fe ren t  from the  phase-plane method. 

whereas 
the  method presented by Kochenburger provides an extension of the  
frequency-response s t a b i l i t y  c r i t e r ion  of Nyquist. The basic  assmp- 
t i o n  i s  that ,  if a sinusoidal signal is  impressed on the  relay coi l ,  the  
periodic square-wave output of the  r e l ay  can be replaced by i ts  f irst  
hannonic. 
p lex i ty  (degree of the  d i f f e r e n t i a l  equation) of the system being con- 
t r o l l e d  increases (Gs 

these components. 

"his technique is  
The study of the  phase 

plane gives a p i c t o r i a l  view of the exact t rans ien t  response, 

This assumption becomes more and more acceptable as the  cam- 

i n  f i g .  4) because of the f i l t e r i n g  act ion of 

With  t h i s  assumption the act ion of t he  re lay  can be expressed i n  
terms of a "describing function" which gives the amplitude and phase s h i f t  
of t h i s  harmonic in  terms of the amplitude of the impressed sinusoidal 
input AK and the re lay  charac te r i s t ics .  The block diagram is shown i n  
f igure 4 where GD i s  the describing function and GC is a compensation 
network added fo r  obtaining good response and s t a b i l i t y .  
mine the compensation network, Kochenburger uses the standard frequency- 
response techniques t h a t  are used f o r  l i n e a r  systems with the exception 
t h a t  the system must be examined f o r  each value of 
tude dependent. Absolute s t a b i l i t y  means, f o r  example, t h a t  the  polar 
p lo t  of l / G C ( b ) G s ( b )  must completely enclose the locus of -%(AK) 
ra ther  than merely the point -1 (see f i g .  5 ) .  

In  order t o  deter-  

GD since it i s  ampli- 

Kochenburger found t h a t  i f  GS = 1 p2 + 2m) t he  compensation I( 
network should be a lead network of the form Gc = (1 + TP)/(1 + P) 

uK 
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where 
t o  be transmitted.  
the conclusions of reference 3 ,  consider the output c of the com- 
pensation network: 

i s  made as large as possible without allowing too much noise 
A s  an interest ing comparison between t h i s  r e s u l t  and 

1 + TP 

= e  

(1 - &).PI 
1 +  

In  the time domain, this can be writ ten as 

(7) 

where i s  the time derivative of e f i l t e r e d  by the  network whose 

t r a n s f e r  function i s  1 1 i- - . If the system equations are reduced 

t o  a nondimensional form, the output of an i d e a l  r e l ay  i s  simply 
I( .) 

R = sgn c = sgn(e + T*;') (9) 

and Kochenburger s d i f f e r e n t i a l  equation of the  complete system is  

A d i rec t  comparison of t h i s  equation with equation ( 5 )  shows that 
what Kochenburger r e f e r s  t o  as a "series compensation network" i s  referred 
t o  as a "control function" by F l u e - L o t z  and coworkers. 
ference i s  t h a t  z1  appears i n  the first and e '  appears i n  the  l a t t e r .  
This i s  merely an academic difference because i n  any physical appl icat ion 
of t he  l a t t e r  work the  e r ro r  derivative e t  must be f i l t e r e d  by some 
means. The left-hand s ides  of the  equations d i f f e r  because Flligge-Intz 
and coworkers studied the  more general case i n  which the output i t s e l f  
appears i n  the equation, t h a t  is, a system with res tor ing  force.  

The only d i f -  

If one examines other examples given by Kochenburger, an extension 

of this comparison can be made. For I G S  = l/p(p + 1)2 he found that 
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the lead network required for compensation must be quadratic. 
work he used had a transfer function of 

The net- 

1 + ap + bp2 
1 + dp + fp2 

Gc = 

where a, b, d, and f are constants. For the required phase lead, 
he made d and f as small as possible, again without transmitting too  
much noise. In the ideal case where d and f are both zero, the 
compensator-relay combination gives an output of 

W 
1 
1 
0 

R = sgn(e + ae' + be") (12) 

which is the same form of control function which Fliige-Lotz and coworkers 
found necessary for good performance with a differential equation of third 
order. 

* 
Varied-coefficient scheme.- What at first appears to be a completely 

different scheme for synthesizing a contactor system is presented in ref- 
erence 1. 
differential equation of this system in a dedimensionalized form is 

The block diagram for this system is shown in figure 6. The 

y" + 2D 1 + pm y' + 1 + yn y = x 00 
where 

with 1f3, 2p, ly, and 27 being constants. Notice that the coeffi- 
cients of the differential equation are varied discontinuously, whereas 
in the two previous examples a lumped forcing constant was switched. 

The switching functions for S, and yn are each broken into two 
parts, one which changes with e and one which changes with e'. It 
is shown in appendix A that it is more advantageous to switch single 
quantities p and 7 according to the following equations 
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where p and 7 axe posi t ive constants. I f  equations (15) are sub- 
s t i t u t e d  i n t o  equation (13), the complete equation becomes 

Y" + m' + Y = X + (2llBly'l + 71~1) sgn(e + k e ' )  

Notice that t h i s  d i f f e r e n t i a l  equation i s  somewhat similar t o  equa- 
t i ons  ( 5 )  and (10). However, i n  equation (16) the coef f ic ien t  of the 
switching function i s  a variable whereas i n  equations ( 5 )  and (10) it 
i s  a constant. The input x i s  also present i n  equation (16) but it 
w i l l  be shown i n  the next section that t h i s  has the same s o r t  of e f f ec t  
as the varying switching-function coefficient.  

Differences i n  Contactor Control Systems 

Although the  contactor control systems previously discussed are  
similar, there  are differences that wasrant investigation. Can it be 
said,  f o r  example, t h a t  equation (16) w i l l  give b e t t e r  response t o  a 
random input than w i l l  equation ( 5 ) ?  , To answer this ,  it i s  first nec- 
essary t o  write equation (16) i n  terms of the e r ro r  
y = x -  e: 

e by subs t i tu t ing  

Consider now t h a t  t h i s  system i s  operating i n  a region where input 
ve loc i t i e s  and accelerations are small, or  
I n  f ac t ,  i f  t h i s  inequality i s  not true, the  output will soon begin t o  
diverge from the  input x. This i s  discussed i n  great  d e t a i l  i n  ref- 
erence 7. I f  the inequality does hold, then the terms governed by the  
switching function sgn(e + ke ' )  
the e n t i r e  right-hand side of t h e  d i f f e ren t i a l  equation. 
conditions the e r ro r  i s  soon driven t o  zero and it has been shown both 
analy t ica l ly  ( re f .  3, p. 29) and experimentally by Lindberg (see r e f .  1) 
t h a t  the  e r ro r  "chatters" about zero w i t h  a s m a l l  amplitude and very 
high frequency r e l a t ive  t o  x o r  y due t o  re lay  imperfections. 
(Appendix B gives a detai led study of the  cha t te r  e r ro r  of control  

lx" + 2Dx'I < 2Dp\y'\ + ylyl .  

predominate and determine the sign of 
Under these 
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systems whose switching function i s  of the  form used i n  equations ( 5 )  
and (16).  Reference 1 contains a study of the cha t te r  e r ro r  of equa- 
t i o n  (13) using equation (141.) 
amplitude very small, quant i t ies  such as x ' ,  x", and y may be 
regarded a s  constants during a f e w  e r r o r  cycles, 
sidered s m a l l  compared with 

Because the  frequency is high and the  

can be con- 2Dply'l 
7ly1, and the equation of motion becomes 

W 
1 
1 

e'' + 2De' + e = a1 

e'' + 2De' + e = -b l  

i f  e + ke' c 0 

i f  e + ke'  > 0 

where al and bl are  posi t ive constants. 0 

Similarly, equation ( 5 )  can be transformed i n t o  

e'' + 2De'  + e = x" + 2Dx' + x - sgn(e + k e ' )  (19) 

Again, i f  the  e r ro r  i s  not t o  diverge, 
equation of motion becomes 

(x" + 2Dx' + X I  < 1 and the  

e'' + 2 ~ e '  + e = a2 

e" + 2De' + e = -b2 

i f  e + ke '  < 0 

i f  e + ke '  > 0 

Notice t h a t  these equations a re  iden t i ca l  t o  equations (18), except 
f o r  the  values of al, a2, bl, and b2 and perhaps the  value of k. 
In  f a c t ,  these equations would r e s u l t  even i f  the switching function were 
something more complicated such as sgn e + kle' le'l) 
t e r  response i s  close enough t o  the  or ig in  of the  
t h a t  any complicated switching function can be replaced by a s t ra ight  
l ine ,  and hence the switching function reduces t o  (see 
f i g .  7 ) .  

because the  chat- ( 
e y e '  

sgn(e + k e ' )  

phase plane 

The parameters of these equations could conceivably be very d i f -  
fe ren t  between the two systems and within each system i t s e l f  at  d i f f e r -  
ent  times depending on the instantaneous values of x, y, and t h e i r  
derivatives.  It w i l l  be shown later t h a t  t he  amplitudes of the cha t te r  
e r ro r s  f o r  equations (18) and ( 2 0 )  are  approximated by 

. 



n 

W 
1 
1 
0 

f o r  a re lay  threshold imperfection of E and 

f o r  a re lay  time-delay imperfection of 
I n  each of these expressions, a represents the  driving-force amplitude 
appearing on the  right-hand s ides  of equation (18) o r  (a), such as 
and b l .  

TR i f  each occurs separately.  

al 

Equation (22) i s  a simplified version of t he  complete expression 
f o r  the  cha t te r  e r ro r  due t o  a r e l a y  time-delay imperfection which is  
discussed later. 
t i v e  and negative driving-force amplitudes are of equal magnitude (e.g., 
a1 = bl 
follow here would apply equally well if the  complete expression were 
used. Equation (21) f o r  a threshold imperfection i s  complete and i s  
va l id  for any value of al and bl. 

This simplified version i s  va l id  only when the  posi- 

i n  eq. (18) ) . A l l  the  azgments concerning equation (22) t h a t  

In an ac tua l  system, both threshold and time-delay imperfections 
occur together and since 
and i n  the  numerator of equation (22), the  e r ro r  amplitude tends t o  
depend only s l i g h t l y  on a. The error depends a l i t t l e  more on k, but 
even t h i s  dependence i s  secondary t o  the dependence on re lay  character- 
i s t i c s  because k has a strong influence i n  only one of the  two expres- 
sions f o r  e r ro r .  
t h a t  is, when the input i s  vaqying slowly as indicated by the  inequal i t ies  
that were necessary f o r  the  formulation of equations (18) and (x)), the 
system response depends much more strongly on the  re lay  cha rac t e r i s t i c s  
than on the  controlled-process equation, feedback, and switching function. 

a appears i n  the  denominator of equation (21) 

It must then be concluded t h a t  during cha t te r  response, 

Design Criterion 

How, then, should one compare d i f fe ren t  system equations t o  deter-  
mine which gives the best  response t o  an undefined input?  
t h a t  the e r ro r s  during chat ter  operation are very s m a l l .  
t ioned e a r l i e r ,  there  i s  a lasge class of applications where t h i s  type 

F i r s t ,  r e c a l l  
A s  w a s  men- 
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of operation i s  very sat isfactory,  and the  range of inputs f o r  which 
chat ter  occurs might be cal led the "region of s a t i s f ac to ry  response." 
Hence, one measure of m e r i t  f o r  a system i s  t h a t  it have the la rges t  
region of sa t i s fac tory  response consistent with i t s  sa tura t ion  values. 
From t h i s  standpoint equation ( 2 )  can be considered t o  be a b e t t e r  sys- 
t e m  than equation (16). 
sa t i s fac tory  response f o r  equation ( 5 )  i s  defined by 

To see th i s ,  first r e c a l l  t h a t  the  region of 

W 
1 
1 
0 

where the saturat ion value of t h i s  system i s  unity f o r  the units chosen. 

To f ind  the  region of s a t i s f ac to ry  response including sa tura t ion  
e f f e c t s  f o r  equation (16) a l l  of the  var iables  t h a t  are produced by the  
component whose sa tura t ion  value i s  under consideration must be gathered 
together. 
point m i n  f igure 6 where a motor or amplifier, f o r  example, would sat- 
urate. 

For equation (16) this means the  quant i t ies  that e x i s t  at 

Equation (17) i s  now wr i t ten  

e" + 2De' + e = + 2Dx' + x - [x + (2Dply'I + y\yl)sgn(e + k e ' i  (24) 

where the terms i n  the brackets are the  same terms as those on the  r igh t -  I 

hand side of equation (16) and are the  quant i t ies  at point m. 
qua l i ty  t o  insure cha t te r  operation f o r  this system i s  defined by 

The ine- 

(25) I lxtt + 2Dx' + XI < Ix + (2Dply'I + y(yl)sgn(e + k e f )  

"his must necessarily give the  same o r  (usually) a smaller region of 
sa t i s fac tory  response than that defined by equation (23) because the 
right-hand side of equation (25) i s  a complicated expression which must 
be equal t o  o r  l e s s  than uni ty  if  the systems of equations ( 5 )  and (16) 
are t o  have the same saturat ion values. Therefore, from the  standpoint 
of providing the  widest region of s a t i s f ac to ry  response, t he  system of 
equation ( 5 )  i s  superior t o  that of equation (16). 

Nothing has been said yet  about w h a t  control  function would give 
b e t t e r  response t o  a random input.  
of d i f fe ren t  control  functions i s  equivalent t o  changing k.  I n  the 
discussion of equations (21) and (22), however, it w a s  seen t h a t  changing 
k 
o r  design a control function it i s  necessary t o  examine responses t o  

During cha t te r  operation the  choice 

had a secondary e f f ec t  on an already small e r ro r .  Thus t o  compare 



17 

W 
1 
1 
0 

. 

inputs which f a l l  i n  part ,  at least, outside the  region of sa t i s fac tory  
response. Also, tne tesi iiiput ~ i is t  fall lzgel;. :.i,thi_n_ the region of 
sa t i s fac tory  response i n  order t o  insure t h a t  the test w i l l  not degen- 
e ra t e  i n t o  a simple examination of saturation operation. 
produced inputs t h a t  s a t i s f y  these requirements a r e  d iscont inui t ies ,  the 
simple s tep  function being the most ccxnmonly used. 

The most e a s i l y  

Therefore, after a system has been designed t o  take full benefi t  
of i t s  sa tura t ion  values, a r a t iona l  approach t o  designing it t o  follow 
random inputs  i s  t o  arrange the  system t o  follow a s tep  input i n  s p i t e  
of the  f a c t  t h a t  superposition does not hold. 

APPROXIMATE EXFRESSIONS FOR RELAY CHAIITER ERRORS 

It w a s  mentioned several  times previously t h a t  f o r  slowly varying 
inputs the  e r ro r  of a contactor system cha t te rs  about zero at a frequency 
which i s  very high compared with the input frequency. Two main causes 
f o r  this high-frequency osc i l l a t ion  are re lay  threshold and time-delay 
imperfections. Exact expressions for t he  amplitude and frequency of 
these osc i l l a t ions  would be cumbersome t o  the  point of being useless.  
Approximate expressions f o r  s m a l l  imperfections a re  qui te  simple f o r  
second- and third-order systems, however, and give a good indicat ion of 
how these e r ro r s  depend on the system parameters. 

Second-Order Systems 

Consider f irst  the  second-order systems of equations (18) and ( 2 0 ) .  
For concreteness, l e t  bl = 0.8, al = 2.1, b2 = 0.2, and a2 = 1.2. 
The e , e '  phase-plane t r a j ec to r i e s  f o r  e" + 2De' + e = a are s p i r a l s  
w i t h  t h e i r  focus at a. 
meshwork f o r  each of the chosen examples. The top two sketches i n  f i g -  
ure 8 show a good portion of the phase-plane p o r t r a i t  and show well the 
difference i n  curvature effected by the  various values of a and b. 
If one confines his a t ten t ion  o n l y t o  t h a t  portion of the  phase plane 
very close t o  the origin,  as  shown i n  the  bottom sketches of f igure  8, 
the  differences i n  curvature are not nearly so important. Experimental 
evidence indicates  that the e r r o r  and e r ro r  rates are small enough t h a t  
an e r r o r  study could indeed be confined t o  the area of the phase plane 
close t o  the  or igin.  

Figure 8 shows a sketch of the phase-plane 

I n  f ac t ,  the  radius of curvature of the  t r a j e c t o r i e s  near the  o r ig in  
i s  so large compared with the error  resu l t ing  from a re lay  threshold o r  
time delay t h a t  it becomes d i f f i c u l t  t o  d r a w  an e r ro r  limit cycle t o  
scale .  Figure 9(a) i s  a sketch of an e r ro r  l i m i t  cycle caused by a 
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switching-function threshold and f igure 9(b) ,  of an e r r o r  cycle caused 
by a time delay. In both f igures  the  angle between the  switching l i n e  
e + ke' = 0 and the e '  axis is  given by Fliigge-htz (ref. 3) as 

k fix 
1 - k D  

q = arc  t a n  

Relay threshold imperfection.- For threshold e r ro r s  t he  single 
switching l i n e  is  replaced by two l i n e s  p a r a l l e l  t o  it which in t e r sec t  
t he  e axis at *E ( f ig .  9(a)) where E is the threshold. These l i n e s  

in te rsec t  t he  e '  axis  at kz. The very small a rcs  of the phase-plane 

s p i r a l s  are replaced by arcs  of c i r c l e s  with a radius  equal t o  the  radius  

of curvature of t he  sp i r a l s  at the  or igin,  namely p = a/V=. The 
requirement t h a t  the s p i r a l s  i n t e r sec t  the  e 
pa ra l l e l  t o  the  e '  
the e r r o r  must have an extremum) is  very nearly s a t i s f i e d  if the  c i r -  
c l e s  are drawn with t h e i r  centers on a l i n e  which is  perpendicular t o  
the  e '  axis and which passes through the or igin.  This approximation 
makes the a rcs  in te rsec t  t he  switching l i n e s  at the same points  that 
the  switching l i n e s  in te rsec t  the e '  
t he  statement ( r e f .  5 )  t h a t  these two types of intersect ions do occur very 
close t o  one another. 

can be taken as h/cos(a - wo) = ,141 - I?. F r o m  the  geometry of t he  
construct ion 

k 

axis with a tangent 
axis (i.e.,  where the  e r ro r  veloci ty  i s  zero, 

axis, which i s  consistent with 

Because these arcs are so f la t ,  the maximum e r r o r  
I -___ 

and the maximum e r ro r  due t o  a threshold imperfection i s  

Relay time-delay imperfection.- The arguments f o r  a time-delay 
e r r o r  are similar except that the new switching l i n e s  a re  inclined a t  
an angle r) - vTR from the e '  ax is  and the  distance between them i s  
given by Fliigge-Lotz ( r e f .  3, p .  96) as 
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f o r  a s m a l l  time delay. The distance L becomes 

aTR s i n  q 
= aTR 

and the e r r o r  due t o  a time delay i s  

Notice t h a t  f o r  threshold errors  a appears i n  the  denominator 
while f o r  time-delay e r ro r s  it appears i n  the  numerator. 
expected since the  magnitude of 
force being applied discontinuously. For a threshold imperfection it 
i s  reasonable t o  expect t ha t ,  if the correcting force i s  larger ,  t he  
resu l t ing  e r r o r  w i l l  be smaller because the  high forces  w i l l  hold the  
e r r o r  close t o  the band of e r ro r  caused by the threshold of measurement. 
On the  other hand, if the  e r ror  i s  caused by a time delay it would be 
desirable  t o  keep the forces  at a low l eve l  because they a re  ac t ing  
through a given time i n  a n  undesired direct ion,  and hence the e r r o r  
increases as the forces  increase. In  e i t h e r  case the  e f f ec t  i s  small 
r e l a t i v e  t o  the  squared time delay or threshold. Also, i n  an ac tua l  
system both t i m e  delay and threshold occur together thus making the 
e f f e c t  of t he  value of a s t i l l  less  important;. 

This is  t o  be 
a represents t he  amount of correct ing 

Alternate derivation.- Although the  above der ivat ion gives one a 
good graphical picture  of the nature of the  approximations m a d e  t o  f ind  
a simple expression f o r  cha t te r  errors, the  procedure was r a the r  lengthy 
and i s  not e a s i l y  extended t o  higher order systems. The same r e s u l t s  
a r e  obtained if one makes the approximations by neglecting terms i n  the  
d i f f e r e n t i a l  equation i tself .  Because the  cha t te r  frequency is  qui te  
high, it i s  possible t o  neglect terms containing e and e '  and r e t a i n  
those containing e". This reduces 

e'' + 2De' + e = -a sgn(e + ke') 



x) 

t o  

e" = -a sgn(e + k e ' )  

t 

. 
(33) 

To see that  this approximation is  the same as  the geometrical approxi- 
mations made above, r e c a l l  t h a t  the  d i f f e r e n t i a l  equation which gives 
c i r c l e s  as t r a j e c t o r i e s  i n  the  phase plane (one of the assumptions made) 
does not contain an e '  term. Therefore, the  assumption that the  phase- 
plane t r a j ec to r i e s  are c i r c l e s  near the  or ig in  i s  equivalent t o  dropping 
the e '  term. But, neglecting higher harmonics, e . i s  r e l a t ed  t o  e '  
by the same fac to r  (namely, the  frequency) that relates e '  t o  e"; 
thus, if one i s  t o  neglect e '  and r e t a i n  e", one can cer ta in ly  neg- 
l e c t  e at  the same time. This, of course, y ie lds  equation (33). 

By inspection of the d i f f e r e n t i a l  equation, the cha t te r  e r ro r  f o r  
equation (53) f o r  a threshold o r  time-delay imperfection i s  symmetrical; 
t h a t  is, the  negative half cycle i s  merely the  reverse of the  posi t ive 
half cycle as shown i n  f igure l O ( a )  . The i n i t i a l  and f i n a l  conditions 
f o r  the  posit ive half  cycle with a r e l ay  threshold imperfection (assuming 
the  imperfection i s  a l so  symmetrical) a re  

e ( T )  = -e(O) ( 34b 1 

e ' ( T )  = - e ' ( O )  ( 34c ) 

Also, the equation of motion f o r  the  f irst  half  cycle i s  

where C1 and C2 are  constants of integrat ion.  Subst i tut ing equa- 
t i o n s  (34) i n t o  equation (35) gives the  maximum e r ro r  f o r  the  posi t ive 
half cycle, an expression which i s  iden t i ca l  t o  equation (28) .  

Figure lO(b) shows the ac tua l  waveform resu l t ing  from equations (34) 
and (35). 
e = 0, which is  consistent with the way i n  which the  switch points were 
drawn i n  the phase-plane study of f igure  9. This i s  due t o  the  quarter- 
cycle symetry of the cha t te r  e r ro r  resu l t ing  from equation (33). T h a t  

It i s  in te res t ing  t o  notice that the  switch points  occur at 
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is, the  homogeneous solutions t o  this equation a re  parabolas which have 

be shown t h a t  the cha t te r  e r rors  for the  equation 
a -JTne of s>metrJ- * k , . . . A  t-L.ir -;e.+fces, L-L a s-l&- fasfi,.orr 

e" + e = -a sgn(e + k e f )  (36 )  

a lso  have quarter-cycle symmetry and again the  switch points occur a t  
e = 0. 
sinusoids, which, of course, have a l i n e  of symmetry. The exact cha t te r  
e r ro r s  f o r  equation (32) would not have t h i s  type of symmetry, however, 
because the  damping term 2De' does not allow any symmetry i n  the  homo- 
geneous solution. 

This i s  because the homogeneous solutions t o  equation (36) are  

For a symmetrical re lay time-delay imperfection TR the cha t te r  
e r ro r  f o r  equation (33) i s  again symmetrical as shown i n  the  sketch 
given i n  f igure  1O(c). 
t i o n  passes through zero at 
f igu re ) :  

For the posit ive half cycle the  switching func- 
T - TR (indicated by a cross i n  the 

This condi t ionmust  be applied at 
because the l a t t e r  value of T does not f a l l  within the in t e rva l  f o r  
which equation (35 )  applies.  
same f o r  both threshold and time-delay imperfections. 
with equation (37)  the  maximum error  f o r  a time-delay imp&rfection is 
found t o  be 

T = T - TR ra ther  than at  T = -TR 

Equations (34b), (34c), and (35)  a r e  the  
Combining these 

Again, the  ac tua l  switch points occur at 
Notice that the  term i n  parentheses i n  equation (38) d id  not appear i n  
equation (31). For very small values of TR this term approaches uni ty  
so t h a t  i n  this case it might be neglected. 
the approximations made i n  equations (29) and (30). 
given by equation (38) therefore i s  more complete and accurate than 
equation (31) because fewer approximations w e r e  made i n  deriving it. 

e = 0 as  shown i n  f igure  10(d) .  

This would correspond t o  
The e r r o r  maximum 
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It 

A rough indication of the range over which these approximate expres- 
s ions (based on eq. (33)) f o r  e r ro r  apply can be given if the  cha t te r  
e r r o r  i s  replaced by i t s  first harmonic. 
imperfection i s  

a 

I t s  frequency f o r  a threshold 

Also, f o r  the  first harmonic, 

W I  
1 
1 
0 Recall  tha t  the  basic assumption made i n  deriving equations (28) and (38) 

was tha t  e'' >> 2De' >> e .  
mate expressions f o r  e r ro r  would be accurate t o  about 10 percent if 

It might then be expected t h a t  the  approxi- 
I 

> lO(2D) = 20D 
26 

Similarly, f o r  a time delay 

> 2OD (42) 

In  a l l  of the preceding d is -  Solution f o r  unequal driving terms.- 
cussions it was implici t ly  assumed t h a t  the posi t ive and-negative dr iving 
forces  were equal i n  magnitude. 
they a re  equal because the  r e l a t ive  magnitudes of these terms are  con- 
tinuously changing because of terms which appear on the right-hand s ide 
of the  error d i f f e r e n t i a l  equation, such as x'' + 2Dx' + x i n  equa- 
t i o n  (19) .  
appl ies  even i f  the posi t ive and negative dr iving terms d i f f e r ;  t h a t  is, 
the e r ro r  f o r  each half  cycle can be found by applying t h i s  equation 
f o r  each value of the driving force.  T h i s  procedure i s  va l id  because 
the  i n i t i a l  conditions f o r  any half cycle a re  merely the  negative of the 
f i n a l  conditions independent of the driving term; t h a t  is, 

C 1  = E/k 

It i s  only a very special  case when 

In  the case of a threshold imperfection, equation (28) 

C2 = 0 and 
i n  equation (35) f o r  threshold imperfections. 

n 
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Psr tbe-ilPla_y imprfect ions,  however, th is  i s  not true because 

and depends d i r ec t ly  on a. In t h i s  case then, the  e r r o r  must be com- 
puted on the  bas i s  that it repeats itself every cycle r a the r  than every 
half  cycle. This can be done by se t t ing  up equations similar t o  equa- 
t i o n  (34) that match the end conditions at  both the posi t ive and nega- 
t i v e  switch points.  However, i n  the third-order case t h i s  same sor t  of 
problem w i l l  come up and it w i l l  be found that a semigraphical method 
of finding the e r r o r  is easier t o  apply and visual ize .  To acquaint t he  
reader w i t h  th i s  method, it is  a l s o  used t o  solve the second-order prob- 
lem (see appendix B) . 
used i n  finding shear, moment, slope, and def lect ion diagrams f o r  simple 
beams. Appendix B shows that t h e  maximum e r ro r  i n  each in t e rva l  i s  

This method follows very closely the procedure 

J 

where m = a l /a2 .  For m = 1 these equations reduce t o  equation (38) .  
Notice t h a t  i n  addition t o  a.n osci l la tory e r ror ,  represented by the  first 
terms of equations (43), there  i s  a b ias  e r r o r  represented mainly by the  
second term. I n  fac t ,  f o r  the  s m a l l  values of TR that are being con- 
sidered, the  b i a s  e r ro r  i s  larger  than the osc i l l a to ry  e r ro r .  The value 
of k i s  usually much la rger  than ‘I& because k must be chosen large 
enough t h a t  the system w i l l  respond w e l l  t o  a good range of s tep  inputs  
(k = 0.3 
of e r ro r  w i l l  be found t o  occur even more generally i n  third-order 
systems. 

i s  a typ ica l  value used in  the  experiments). This same type 

It i s  ra ther  curious t o  note tha t  while a change i n  the l e v e l  of 
the driving forces  (i .e . ,  both al and 
f ac to r )  has the opposite e f f ec t  on the overa l l  cha t te r  amplitudes f o r  
threshold and time-delay imperfections, the r a t i o  between the posi t ive 

a2 are changed by the same 
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and negative peak e r ro r s  i s  the same f o r  e i t h e r  threshold o r  time-delay 
e r ro r s  (neglecting the  bias term i n  the  time-delay case) .  That  is, 

i n  e i ther  case. This observation has ra ther  dubious ' m e a n i n g  because the  
presence of t he  bias term seriously a f f ec t s  w h a t  one means by "positive" 
and "negative" peaks. it does a id  i n  pictur ing the  motion because 
the level  of the bias l i n e  can be observed by the change from negative 

W 
1 
1 
0 

But 

t o  posit ive curvature, o r  vice versa, at  t h i s  point.  Thus i n  f igure  11, 
which shows the  response of zquation ( 5 )  (or, more properly, eq. (45)) 
t o  an input of m 
i s  clearly evident, and a l so  one can picture  where the  b i a s  l i n e  (which 
i s  approximately a sinusoid at the  input frequency i n  this case) lies. 
This error a t  the  input frequency i s  not caused e n t i r e l y  by the b ia s  
e r r o r  discussed here and t he  addi t ional  e r r o r  is  discussed i n  the  see- 
t i o n  "simple Theory f o r  Low-Frequency Errors That Occur i n  Presence of 
High-Frequency Relay Chat te r .  'I 

x = A s i n  cur, the  e f f ec t  of the  continuously changing 

Analog-computer simulation of re lay  t i m e  delay.- An analog-computer 
simulation w a s  made of the  second-order system given by 

y"(T) + W'(T) + y(7) = a sgn 7 - rpR) + ke'(7 - (45 1 

The c i r cu i t  f o r  this simulation is  shown i n  f igu re  12. Notice t h a t  the 
time delay TR 
reference 1. 
relay used, a study was f i r s t  made of the  equation 

was effected with the  Pad; type c i r c u i t  discussed i n  
I n  order t o  take in to  account the inherent delay of the 

f o r  which the exact expression f o r  cha t te r  e r r o r  i s  avai lable .  
input x held at  zero, experimental r e s u l t s  of peak e r ro r s  were found 
f o r  a ser ies  of Pad; c i r c u i t  time delays These r e s u l t s  were then 
compared with the  curve of peak e r ro r  versus t i m e  delay given by equa- 
t i o n  (38) and it was found that i f  an inherent re lay  delay of 0.015 sec- 
ond (computer time was the  same as ac tua l  time f o r  the  units chosen) i s  

With the 

T,. 
n 



added t o  the  Pad6 time delay Tc, the experimental r e s u l t s  agree very 
closely with the  e r ro r s  given by this equation f o r  k = 0.5 and 0.2>. 

These experiments were repeated using the more complete equation (45) 
with D = 0.5 and x = 0, again for k = 0.5 and 0.25. The r e s u l t s  a r e  
tabulated i n  t ab le  I along with the e r ro r  calculated using equation (38) 
with TR = Tc f 0.015. 
quite good except f o r  large values of 
and experimental e r ro r s  versus time delay i n  f igure  13 shows that the 

W theory diverges fram the computer r e su l t s  i n  a manner predicted by equa- 
1 t i o n  (42). For example, at TR = 0.120, equation (42) indicates  that 
1 the  difference between the approximate e r r o r  of equation (38) and the  
0 ac tua l  e r ro r  should be about 9 percent while f igu re  13 shows this d i f -  

ference t o  be 10 percent. 

The agreement between theory and experiment is 

TR. Also, a p lo t  of t heo re t i ca l  

Third-Order Systems 

Relay threshold imperfection.- Consider the  third-order d i f f e r -  
e n t i a l  equation 

y"' + 2{Qy" + 0%' = N sgn e + kle' + k2e") ( (47) 

which i s  not reduced t o  the  minimum number of parameters as was done i n  
the second-order case; however, the units are careful ly  considered and 
f u l l y  discussed i n  appendix C. 
s implified d i f f e r e n t i a l  equation for  t he  longitudinal motion of an air- 
c r a f t  or  missile with natural frequency Q and damping r a t i o  f ,  where 
y is t h e  missi le  angle with respect t o  some average f l i g h t  path. In 
this case the  coeff ic ient  N would represent the e f f ec t  of some con- 
t r o l  surface on the motion of the missi le .  The posi t ion of the control  
surface i s  reversed discontinuously a s  d ic ta ted  by the l i nea r  switching 
function i n  equation (47) which can be made in to  a d i f f e r e n t i a l  equa- 
t i o n  i n  the e r ro r  e by substi tuting y = x - e as w a s  done for  equa- 
t i o n  ( 5 ) :  

Equation (47) might be considered a 

e"' + 2csZe" + SI 2 e '  = x"' + 2{Rx1' + Q2x' - N sgn(e + k le '  + k2e") (48) 

A s  was the case f o r  second-order systems, i f  the  e r ro r  i s  not t o  diverge, 

Ix"' + 25Qx" + Q2x11 < N. 
can be wri t ten 

When t h i s  inequal i ty  holds, equation (48) 
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where N1 and N2 a re  posi t ive.  

To f ind  the amplitudes of the cha t te r  e r ro r s  of equation (49), f irst  
consider the  very special  case i n  which N1 = N2 = N ( i - e . ,  x = Constant). 
Also, assume t h a t  the frequency of the cha t te r  e r ro r s  i s  much higher than 
the  natural  frequency 1;1 of the  missile ( the subsequent der ivat ion veri- 1 

1 

0 f ies  t h i s  t o  be a va l id  assumption) so t h a t  
t i o n  (49) can then be approximated by 

e"' >> 25Qe'' >> a2e'. Equa- 

e"' = -N sgn e + k l e '  + kze") ( (50 )  

As f o r  the second-order system, i n  the  case where the posi t ive and nega- 
t i v e  driving terms are of equal magnitude, the  e r ro r  during application 
of the negative tern i s  j u s t  the  negative of the e r r o r  during application 
of the  posit ive driving term as shown i n  figure 14. 
nothing i n  the d i f f e r e n t i a l  equation gives preference t o  e i t h e r  a posi- 
t i v e  or negative e r ro r .  Thus one needs t o  consider only one-half cycle 
i n  order t o  determine the  motion. The init ial  and f i n a l  conditions f o r  
the half cycle f o r  which a negative driving term i s  applied are 

This is  because 

e(T) = - e ( O )  

e ' ( T )  = -e'(O) 

e"(T)  = -el'(O) 
J 

The equation of motion f o r  this in t e rva l  i s  

1 e = -- N T ~  + C T* + e27 + C 3  6 z 1  
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where C1, C2 ,  and C3 are constants of integrat ion.  If equations (51) 
are subst i tuted i n t o  equatlon \>z), these iniegr&tieii z ~ ~ a t c . ~ t s  a T 
can be found. 

# - - ,  

The maximum e r ro r  for  this half cycle i s  then found t o  be 

where T is t o  be found from 

-- 26 T3 + k2T = - 
12 N 

If one would l i k e  t o  have an expl ic i t  expression f o r  not ice  

tha t ,  since E is  very small, T as solved frm equation (9) w i l l  
a l so  be very s m a l l .  But if T i s  very s m a l l ,  the f irst  term i n  this 
equation can be neglected r e l a t i v e  t o  the  second. Hence one can take 
T 2: 2 ~ / k 2 N  and 

(54) 

The magnitude of the  discrepancy t h a t  r e s u l t s  ?ran neglecting the  
first term of equation ( 5 4 )  is  very conveniently seen i f  one p l o t s  the  
two terms on the left-hand s ide against T as shown in  figure 15. A 
value of k2 = 0.10 w a s  taken f o r t h i s  p lo t .  This is  a r e a l i s t i c  value 
as i s  seen i n  the sect ion "Step Response of Third-Order Contactor System 
With Two Complex Roots.'' If T is  t o  be a solution, then the  difference 
between these curves must be equal t o  
t h a t  the  height measured from the T 3 / U  
equal t o  2 c / N .  If one chooses t o  neglect t he  cubic term, t h i s  height is  
measured from the  T ax i s  instead. Inspection of the curves shows tha t  
t h i s  approximation gives very l i t t l e  e r r o r  i n  T f o r  values of 2 e / N  up 
t o  0.02, and the  e r ro r  at 
even more in te res t ing  t o  notice that  figure 15 shows very c l ea r ly  that 
equation (54) has a pos i t ive  root fo r  T only f o r  values of 2 e / N  less 
than a ce r t a in  " c r i t i c a l "  value. That is, s ince 2 e / N  is always measured 
f r o m  the T3/12 curve t o  the  k 2 T  curve, the only pos i t ive  values f o r  
2 e / N  l i e  i n  the shaded -ea between the or ig in  and the in te rsec t ion  of 
t h e  two curves. The maximum value of 2 e / N  i n  t h i s  area i s  the  " c r i t i c a l "  
value. .For l a rge r  values, equation (54) has no real pos i t ive  root  f o r  
T A similar s i tua t ion  arises f o r  a 
time-delay imperfection and it was observed experimentally that f o r  

2 e / N .  I n  the  figure, t h i s  means 
curve t o  the  k2T curve must be 

2c/N = 0.035 is still  not too large.  It is 

and no periodic motion exists. 
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time delays greater  than some c r i t i c a l  value the e r ro r  diverged. 
the threshold-imperfection case, it can easily be shown t h a t  the  c r i t i c a l  
value fo r  E i s  

For 

The half period T at  t h i s  c r i t i c a l  condition i s  simply 

This means tha t ,  no matter what t he  other parameters are, the lowest 

(57) 

possible cha t te r  frequency f c r  = - i s  determined solely by the 
a c r  

choice of k2. This frequency i s  ra ther  low; therefore,  it can be 
applied only t o  equation ( w )  from which it w a s  derived and not t o  equa- 
t i o n  (49) because the  lower e r ro r  der ivat ives  a re  no longer negligible,  
although it w a s  observed i n  an analog simulation that a c r i t i c a l  time 
delay also e x i s t s  f o r  equation (49). 

Returning t o  the discussion of the  chat ter  e r ro r  f o r  small values 
of E, figure 14(b) shows the  shape of the e r ro r  cycle during the  in t e r -  
v a l  j u s t  considered as found by actual ly  solving equations (51) and (52). 
Notice that the i n i t i a l  values at  the beginning of each half cycle, that 
is ,  C1 and C3 (where C2 = 0) i n  equation ( 5 2 ) ,  depend on the value 
of N as shown i n  equations ( 5 3 )  and (54). Hence when N1 f N2 one 
cannot use equation ( 5 5 )  t o  f ind  the  e r ro r  of each half  cycle separately 
i n  the  same manner as w a s  done i n  the  second-order system with a thresh- 
old imperfection. 

Without the  symmetry argument t h a t  w a s  used i n  the case where 
N1 = N2, conditions must be matched a t  both switch points  and eight  
equations with eight  unknowns would r e su l t ,  two of the equations being 
cubic. This i s  the point where the  semigraphical method, presented i n  
the  second-order system with time delay, w i l l  very de f in i t e ly  be an a id  
by providing a systematic method of solving these eight  equations. 
Again, the d e t a i l s  are presented i n  appendix B and only a rough out l ine 
w i l l  be given here. In  essence, the  method involves f inding the  r a t i o  
of t i m e  in tervals  during application of posi t ive and negative driving 
force and the  constants of integrat ion f o r  e" and e '  by imposing the 
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- . .  . conaition ui' per ie8 iz i ty  c?n e''; e': and e ,  respectively.  The period 
of the motion and the integrat ion constant f o r  
imposing the switching conditions 

e are  then found by 

and 

(e + kle ' + k2e" = E  (59) 

at the beginning and end of in te rva l  T1, respectively.  
a p lo t  of e"' and the resu l t ing  error.  The equation f o r  T1 that 
r e s u l t s  frm equations (58) and (59) is  

Figure 16 shows 

N12 + kP1T1 = 2~ -iq T1 

which, of course, i s  j u s t  a more general form of equation (54), and it 
i s  t o  be expected that the " c r i t i c a l  threshold" consideration w i l l  apply 
here also.  
and the  c r i t i c a l  threshold i s  

The procedure i s  ident ical  t o  t h a t  used f o r  equation (54) 

where 

As it stands, equation (61) might lead one t o  believe that making the  
dr iving terms N1 and N2 more different ,  t h a t  is, making n smaller 
(see appendix B), has a stabi l iz ing influence because t h i s  tends t o  make 
cCr la rger .  This i s  misleading because from equations (48) and (49) 
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N 1  + N2 = 2N 

so that equation (61) can be more properly expressed by 
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(64) 

This form i s  more eas i ly  interpreted because none of the  other param- 
e t e r s  i n  the equation change when n changes. It shows that making n 
less than 1 makes 
e f f e c t  that one might expect, but the  reduction i n  
slowly a t  f irst .  For instance, a t  n = 0.49, E C r  i s  reduced from i t s  
value at 

cCr smaller and therefore does have the  des tab i l iz ing  
occurs very 

n = 1 by a f ac to r  of only 1.40/1.49. 

As i n  the case f o r  n = 1, it i s  reasonable t o  neglect t he  first 
term i n  equation (60) f o r  small values of 
s ion fo r  peak e r ro r  can be obtained. 
shown i n  appendix B that the  peak e r ro r s  are expressed by 

E so t h a t  an e x p l i c i t  expres- 
With t h i s  approximation, it i s  

c 

There a re  several  in te res t ing  fea tures  t o  t h i s  motion. F i r s t ,  
both of the peak e r ro r s  given by equation (63) occur i n  the  in t e rva l  of 
the driving term of smaller magnitude, regardless of whether it i s  
applied as a posi t ive o r  a negative term. 
equation, N1 was taken as the  smaller driving term. As shown i n  f i g -  
ure 16, N1 was applied as a posi t ive term. Therefore, if one wishes 
t o  f ind  the e r ro r  i n  the case where the  smaller N i s  applied as a neg- 
a t ive  term, then a negative sign must be attached t o  the  e r ro r  that i s  
given by equation (63). 
f o r  second-order time delays when n f 1, a b ias  e r ro r  e x i s t s  i n  addi- 
t i o n  t o  an osc i l la tory  e r ror .  There a re  three distinguishing features  
t o  t h i s  bias error :  
l a rger  magnitude, (2)  f o r  the s m a l l  thresholds considered here, it i s  
considerably larger  than the osc i l l a to ry  e r ror ,  and (3)  it i s  not equal 
simply t o  the integrat ion constant f o r  e as w a s  found f o r  a second- 
order system, because par t  of t h i s  constant i s  absorbed i n t o  the  f i r s t  
or oscillatory term. 

In the der ivat ion of t h i s  

Also, this equation shows that, as i n  the  case 

(1) It takes on the  sign of the  driving term of 
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Relay t.lme-delay imperfection.- For t h e  spec ia l  case where N1 = N2, 
the  solut ion f o r  peak e r ro r s  f o r  a time-delay imperfection follows, as 
f o r  t he  second-order system, qui te  closely t o  t h e  e r r o r  der iva t ion  f o r  
a threshold imperfection. 
t i o n  ( 5 3 )  except that the  half period T 

The maximum e r r o r  i s  again given by equa- 
i s  now t o  be solved from 

For very small values of TR t h e  peak e r r o r  i s  given approximately by 

There i s  a c r i t i c a l  t i m e  delay f o r  equation (66) j u s t  as there  w a s  
a c r i t i c a l  threshold f o r  equation (54). 
t he  equation f o r  t h i s  c r i t i c a l  time delay 

It i s  not d i f f i c u l t  t o  show t h a t  
i s  

TRcr 

but f inding a solut ion t o  this  equation i s  reasonable only f o r  specif ied 
values of k l  and k2, and even then a sixth-order polynomial must be 
solved. 

For the  case where N1 f N2 it will be assumed at  the  outse t  that 
a t i m e  delay can be considered as a variable threshold.  This i n  i tself  
i s  not an approximation, but  it provides a means of making an approxi- 
mation t h a t  g rea t ly  s implif ies  t he  e r ror  der ivat ion.  
the  solut ion t o  very s m a l l  imperfections, but then equation (49) approx- 
imates equation (48) f o r  only small imperfections. Denoting by F the  
argument of t h e  switching function, i t s  time der iva t ive  i s  

T h i s  r e s t r i c t s  

A t  t he  in s t an t  before a switch point from -N2 t o  N1 
star t  of i n t e r v a l  T1 i n  f i g .  16) t h i s  becomes 

( j u s t  before the  
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so tha t  the equivalent threshold a t  t h i s  switch point i s  

Eeq -kP2"R (70) 
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The equivalent threshold a t  the  other  switch point i s  s imi la r ly  approxi- 
mated by t h i s  same expression with -N2 being replaced by N1 i n  
equation ( 7 0 ) .  Using these thresholds, the  equation f o r  T1 i s  

The computation of a c r i t i c a l  time delay using t h i s  complete cubic equa- 
t i on  would not be too prof i tab le  because, f o r  time delays large enough 
t h a t  t h e  cubic term becomes important, none of t he  other approximations 
already made are  reasonable. Neglecting the cubic term, t h i s  equation 
can be solved exp l i c i t l y  f o r  T 1  and the peak e r ro r  becomes 

1 

k - TR 

k-$!R 
Notice that terms such as t h a t  appeared i n  the  second-order 

time-delay case do not appear here. These terms are  absent because of 
the  approximation made i n  equation (69). However, i f  t h i s  approximation 
i s  not made, the  expression f o r  the  peak e r ro r s  becomes qui te  lengthy, 
and f o r  small values of TR unnecessarily lengthy. If one des i res  t o  
f ind  the e f f ec t  of t he  neglected terms f o r  la rger  values of TR, then 

he can go back t o  equation (66) f o r  t he  case where N1 = N2 and no 
approximations are  made. This w i l l  give the  t rend of the  e f f ec t  of 
becoming large r e l a t ive  t o  kl and k2 even i n  the case w h e r e  N 1  f N2. 

TR 
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Analog-computer simulation of relay time delay. - Equation (47) was 
s e t  up on %ne corripuki- as s h c ~ x  ir, flsce 17 vith the except.inn that the 
Pad; time-delay c i r c u i t  was inser ted between the output of amplifier 19 
and the relay.  The f irst  se r i e s  of t e s t s  were run with $Il = N2 = 40 
and the r e s u l t s  a re  tabulated i n  table I1 along with the peak e r r o r  pre- 
dicted by equation (72) .  
rithmic p lo t  of the experimental error showed t h a t  it can be expressed 
a s  a constant times the  th i rd  power of the  time delay. 
delay of the relays w a s  again taken as 0.017 second f o r  t h i s  comparison. 
These experiments were repeated using the third-order system described 
by equation (49) with and the resu l t ing  e r ro r s  were compared 
with the e r ro r  predicted by the exact equations ( 5 3 )  and (66). The 
agreement w a s  again poor and it was concluded t h a t  these e r ro r s  were so 
s m a l l  and depended so strongly on the time delay t h a t  considerable com- 
puter e r ro r  crept i n .  

The agreement i s  quite poor except t h a t  a loga- 

The inherent 

N 1  = N 2  

The b i a s  e r ro r s  f o r  experiments where N1 f N2 were r e l a t i v e l y  
large,  however, and the agreement with equation ( 7 2 )  w a s  qui te  satis- 
factory.  Table I11 l ists  the experimental b ias  e r ro r  and the  b i a s  e r ro r  
predicted by t h i s  equation f o r  several values of the  various parameters. 
Figure 18 shows an example of the bias e r ro r  resu l t ing  from changing n. 
I n  running this tes t  
(N1 = 40 throughout the test) so as t o  reduce the e f f ec t  of the  com- 
puter d r i f t .  

N2 was changed back and f o r t h  from 10 t o  4 0  

SIMPLE THEORY FOR IDW-FXEQUENCY ERRORS THAT OCCUR 

IN PRESENCE OF HIGH-FRE&UENCY RELAY CHATTER 

I n  the previous sections the  only e r ror  mentioned i s  the  high- 
frequency cha t te r  e r ro r  that ex i s t s  because of r e l ay  imperfections. 
c loser  study of the response of these contactor systems f o r  slowly varying 
(slowly, t h a t  is, with respect t o  the cha t te r  frequency) inputs  f o r  which 
cha t te r  occurs shows t h a t  another error very d i f f e ren t  i n  o r ig in  and 
nature e x i s t s  at the  same time. This addi t ional  e r ro r  i s  at  the  fre- 
quency of the input and can, i n  fac t ,  be found by the consideration of 
an equivalent l i nea r  system. 

A 

Second-Order System 

Error e uation.- F i r s t  consider the  second-order system of equa- 
t i o n  ' h u d y  of the low-frequency error  ( t h i s  i s  re fer red  t o  
as a low-frequency e r ro r  because the cha t te r  e r ro r  i s  at a much higher 
frequency), assume t h a t  the  re lay  imperfections are  so s m a l l  t h a t  
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- Y' (75) 3' = 2' 

The delayed-error der ivat ive z' 
i s  the quantity t h a t  the  system ac tua l ly  uses. Rewriting t h i s  equation 
i n  terms of the ac tua l  e r ro r  e, it becomes 

i s  given i n  equation (74) because this 

e + ke'  = -k(%' - x') (76)  

Considering sinusoidal inputs x = A s i n  UT, the  phase l a g  between 
'v x' and x' i s  

u = 1 arc  tan(Tiu) (77)  
n 

- 

chat ter  e r r o r s  become unimportant. Instead, take i n t o  account the delays 
t h a t  are encountered i n  forming the e r ro r  der ivat ive 
t h a t  e '  = x' - y ' .  I f  i n  obtaining t h i s  difference more delay i s  encoun- 
te red  i n  obtaining x '  than y '  o r  vice versa, it can be shown t h a t  a 
noticeable e r ro r  will occur. 

e ' .  Recall  a l so  

Suppose, f o r  example, t h a t  y '  i s  available with no appreciable 
delay but t h a t  f i l t e r i n g  i s  necessary on x ' .  The analog-computer setup 
used (see f i g .  12) gave a t r ans fe r  function f o r  x' of the  form 

'y 

W 

0 

ru 
where x '  i s  the f i l t e r e d  x'. Values of n from 1 t o  3 were found 
sat isfactory,  depending on the device used t o  provide the input x. It 
should be mentioned t h a t  f igure 12 is a c i r c u i t  used i n  l a t e r  s tudies  i n  
which both x' and y' were f i l t e r e d  by the same amount. 

The basic assumption t o  be made i n  order t o  f ind  the low-frequency 
e r ro r s  i s  t ha t ,  since the  system i s  chattering, the argument of t he  
switching function i s  osc i l l a t ing  about zero and can be set equal t o  
zero f o r  the purpose of finding the low-frequency solution. 
t i o n  ( 5 )  t h i s  means t h a t  

For equa- 

e + kz'  = 0 (74) 

where 
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a = 1 Tim 
n 

The at tenuat ion between g' and x' f o r  s m a l l  values of T i m  i s  

Ad 

The difference between x' and x' i s  then 

n L - 

Defining H by 

equation (80) can be wri t ten 

'v 

x '  - x' 
h = (1 - H)COS(W - a )  - COS cl~r 

= 11 - H ) c o s  a - 3.0s clrr + [(l - H)sin a]sin cur 

~ 

= f(1 - H ) 2  + 1 - 2 ( 1  - H)cos a cos 

(79)  
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If H i s  small, t h i s  equation reduces t o  

L - 1 4 I ( T i m ) '  

n 
- 

2 s i n  

t 

W 
1 
1 
0 

- 
n 

In f a c t  values of ~ ( T ~ L D ) ~  consis tent  wi th  t h e  r e s t  of t he  system are 
L-r n 

so s m a l l  t ha t  t h e  e f f e c t  of a t tenuat ion between 2' and x '  w i l l  be 

neglected. Making t h i s  approximation and noting t h a t  1 $ Tim i s  

small, equation ( 8 4 )  becomes 
n 

n I n I 

Substi tuting equation ( 8 5 )  i n to  equation (76)  gives 

Notice that  t h i s  i s  merely the d i f f e r e n t i a l  equation of a l i n e a r  forced 
v ibra t ion  problem and i t  can be solved very simply by a number of standard 
methods. The steady-state solut ion i s  

where 

e = a rc  tan(lpu) . 
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Computer simulation fo r  sinusoidal inputs.- In  order t o  check 
equation (87) ,  the  second-order simulation of figure 12 (witnout t h e  
time-delay c i r c u i t  and with no 
inputs generated i n  the  computer. 
and the equation were within computer and instrumentation accuracy as 
shown i n  t ab le  I V .  

y '  f i l t e r i n g )  w a s  run using s inusoidal  
The agreement between computer r e s u l t s  

A typ ica l  computer response is  shown i n  figure 19. 

Third-Order System 

Error equation.- An example of a third-order system, taking i n t o  
account the  f i l t e r i n g  delays, can be wr i t ten  

y'" + 2Sfly" + n2y' = N sgn e + klgl + k$") ( 
In  a manner analogous t o  the second-order example, consider t he  case 
where y' and y" are avai lable  d i rec t ly  and f i l t e r i n g  i s  required on 
x' and x". The analog-computer c i rcu i t  of equation (88) s shown i n  
f igure 17. The broken-line y '  input shown i n  f igure 17 was used f o r  

amplifiers 4 and 18 were set t o  zero. 
function f o r  2' of the form 

\ these experiments and the  f i l t e r i n g  capacitors C 2  and C 4  across 
This c i rcu i t 'g ives  a t r ans fe r  

'y 

- =  (89) X '  P 
x (1 + ~ 1 1 ~ )  (1 + ~ 1 2 ~ )  (1 + TlnP) 

Similarly, ?' i s  defined by 

P2 -4' X 

A s  f o r  the  second-order system, during cha t te r  operation the argument 
of the switching function osc i l l a t e s  about zero and f o r  very small r e l a y  
imperfections 

Also, t he  ac tua l  e r ro r  der ivat ives  e '  and e" are re la ted  t o  Z' and 
Z" by 

SO t ha t  equation (91) becomes 

e + kle' + +e" = -kl(?' - x ' )  - %(?' - x") (93) 



The procedure f o r  finding the terms on the  right-hand s ide of t h i s  equa- 
t i o n  for x = A s i n u n  i s  ident ica l  t o  the procedure used i n  the second- 
order case so t h a t  

n n / 

and 

W 
1 
1 
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If equations (94) and (95) a r e  subst i tuted in to  equation (93), the 
resul t ing d i f f e r e n t i a l  equation i s  again merely a l i n e a r  forced vibrat ion 
problem. The resu l t ing  e r r o r  i s  a sinusoid a t  t he  input frequency. This 
agrees very closely with the observations of t he  following experiments. 

Computer simulation f o r  sinusoidal inputs.- Experimental ver i f ica-  
t i o n  of the theory discussed i n  the  preceding section was made using the 
analog-computer c i r c u i t  of f igure 17. The sinusoidal input was generated 
by solving the  equation 

(96) 2 X " + W X  = o  

on amplifiers 7, 8, and 9. This was done r a the r  than using an external-  
function generator i n  order t o  reduce t h e  noise on x and i t s  deriva- 
t i v e s .  Generating these sine waves i n  the computer gave the addi t ional  
advantage t h a t  x' and x'' were avai lable  as outputs of integrators .  
This allowed the e f f e c t  of x '  and x'' f i l t e r i n g  delays t o  be studied 
separately because these integrator  outputs could be used d i r e c t l y  with 
no f i l t e r i n g .  
system, of course, because input der ivat ives  are not always d i r e c t l y  
avai lable .  ) 

(Such techniques could usually not be used i n  an ac tua l  

The f i r s t  experiments were made using integrator  outputs f o r  both 
x '  and x" with no delays and the  r e s u l t s  a r e  shown i n  f igu re  20(a) .  
Notice that t he  e r r o r  i s  very s m a l l  but i s  roughly a sinusoid a t  t he  
input frequency. This e r ro r  i s  only 0 .1  percent of t he  input amplitude 
and i s  small enough t h a t  it was a t t r ibu ted  t o  computer e r ro r .  Also, i n  
t h i s  and the following experiments the cha t te r  e r r o r  was too s m a l l  t o  be 
noticeable i n  the  f igures  because no in ten t iona l  r e l a y  delays were in t ro -  
duced and the inherent delay was very s m a l l .  

Only x '  f i l t e r i n g :  To study the e f f e c t  of x '  f i l t e r i n g  delay 
alone, x '  was derived by ac tua l ly  d i f f e r e n t i a t i n g  x i n  amplifier 17 
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and f i l t e r i n g  it as shown i n  figure 17. The second der ivat ive XI '  was 
again taken d i r ec t ly  from an integrator.  

Solving equation (93) with 2" - x" = 0 and taking 2' - x '  from 
equation (94), the  e r ro r  (neglecting cha t te r  amplitude) i s  

where 

e = a rc  t a n k  1" ) 
v2 

Experiments were run using various values f o r  A, kl, (u, and Tli 
and the e r ror  amplitude was measured and compared with the  values given 
by equation (97). A typ ica l  computer response i s  shown i n  f igure  20(b) 
and the r e s u l t s  a re  tabulated i n  table  V ( a ) .  
and k2 used gave optimum response t o  a 20-volt s tep  input. Notice t h a t  
the agreement between theory and experimental r e s u l t s  i s  very close. The 
widest gap of 11-percent difference occurs i n  run 9 with k2 = 0.588 
( the  la rge  11-percent e r ror  of run 5 can be discounted because the e r r o r  
was so small that  it was d i f f i c u l t  t o  measure and was comparable t o  the  
computer e r ro r  of f igure 20(a)) .  This ra ther  s ign i f icant  difference i s  
not too surprising because a very large change (by a f ac to r  of 7.5,to 1) 
had t o  be made i n  
e r ror  amplitude. 
have on k2 

a good opportunity t o  a f fec t  the result. 
only a very s m a l l  unintentional time delay Ta i n  the x" c i r c u i t  
could account f o r  the discrepancy of run 9, because the e r r o r  with 
present depends strongly on k2. 

The "normal" values of kl 

k2 i n  order t o  make an appreciable e f f ec t  on the  
This means tha t  any dependence t h a t  the  e r ro r  might 

other than a s  taken into account i n  equation (97) would have 
For example, t he  presence of 

T a  

Only x" f i l t e r i n g :  Using an integrator  output t o  obtain x' with 
no f i l t e r i n g  and finding x" by actual ly  d i f f e ren t i a t ing  x twice i n  
amplifiers 3 and 4 and f i l t e r i n g  as shown i n  f igure  17 with condensers C3 
and C4 and r e s i s t o r s  R2 and R3, the  e f fec t  of XI '  delay alone was studied. 
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Solving equation (93) with 2' - x' = 0 and using 2" - x" from 
equation (95), the  theo re t i ca l  e r ro r  i s  

-kP3 1 T2i 

e =  m s i n  037 - - - c T 2 p  - .) (98) 

Experimental results are again compared with the amplitudes given theo- 
r e t i c a l l y  and the  r e s u l t s  are tabulated i n  t ab le  V(b). 
qu i te  wel l .  

i m  i 2 2  

The results agree 

Both x' and x" f i l t e r i n g :  Both x '  and x" were found by 
d i f fe ren t ia t ion  of x 
f ind  the  e f f ec t  of x' and x" delays occurring simultaneously. 

as indicated above, and experiments were run t o  

I n  t h i s  case, the theo re t i ca l  e r ro r  is  found by subs t i tu t ing  both 
equations (94) and (95) in to  equation (93) where the right-hand s ide 
then becomes 

W 
1 
1 
0 

Tlio and 9 = T 2 p .  

n m 

Considering these two terms as vectors ro t a t ing  at angular veloci ty  o 
U 1 2  U 

and displaced from each other by the angle - d + - - - they can be 
2 2 2 '  

added into a s ingle  vector by using the l a w  of cosines and the  magnitude 
of the  summation vector i s  
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a l so  

I 

. 

Using t h i s  summation vector as t h e  forcing term on t h e  right-hand s ide  
of equation (93), t he  e r r o r  i n  t h i s  case i s  

The comparison of experimental e r r o r  amplitudes with those predicted by 
equation (102) i s  given i n  t ab le  V(c). 
about 6 percent. 

The r e s u l t s  are consis tent  wi th in  

Verif icat ion of theory f o r  other inputs.-  The analog-computer experi-  
ments of t he  previous paragraphs demonstrate t h a t  equation (93) i s  v a l i d  
f o r  sinusoidal inputs; t h a t  i s ,  f o r  sinusoidal inputs,  a t  least, t h e  non- 
l i nea r  control  system of equation (88) can be replaced by an equivalent 
l i n e a r  control  system as given by equation (93) during a region of cha t t e r  
operation. 
therefore,  equation (93) should be applicable t o  any input as long as 
cha t te r  operation i s  maintained. 
made with the  analog-computer simulation. 

But f o r  a l i n e a r  system, the l a w  of superposit ion holds; 

A ve r i f i ca t ion  of t h i s  reasoning w a s  

The inputs  chosen t o  demonstrate superposit ion were two sinusoids 
a t  d i f f e ren t  frequencies and amplitudes. The experiments were conducted 
so t h a t  t he  only e s s e n t i a l  f i l t e r i n g  delay was 0.10 un i t  of machine t i m e  
i n  the  x' c i r c u i t .  It should be mentioned t h a t  t h i s  delay was made 
in ten t iona l ly  la rge  so t h a t  t he  e r ror  would be large and easy t o  analyze. 
Figure 21(a) shows x and e f o r  x = 15 cos(O.446~) and f igure  21(b) ,  
f o r  x = 1.00 cos (2 .83~) .  A s  taken from these experimental r e s u l t s ,  t h e  
e r ro r  amplitudes are 0.15 vol t  and 0.2 vo l t ,  respect ively.  Computation 
of t h e  theo re t i ca l  e r r o r  f o r  these inputs using equation (97) gave e r r o r  
amplitudes of 0.15 and 0.20, respectively.  Figure 2 l ( c )  shows x and 
e fo r  x = 15 cos(O.446~) + 1.00 c o s ( 2 . 8 3 ~ ) .  The resu l t ing  e r r o r  i s  seen 
by inspection of t h e  f igure  t o  be a simple superposition of t he  e r r o r s  fo r  
the  separate inputs .  Notice t h a t  the e r r o r  for x = 1.00 cos(2.83-r) i s  
la rger  than t h a t  f o r  
i s  much smaller. 
of t he  input frequency. 
shown i n  f igures  21(d) t o  2 l ( f ) .  

x = 15 cos(O.446~) even though t h e  input  amplitude 
This i s  because the e r r o r  i s  proportional t o  t h e  square 

A s i m i l a r  example of superimposed inputs i s  

Range of inputs  t h a t  give chatter response.- It i s  r a the r  cu r ious  
t o  no t ice  tha t ,  so f a r  i n  t h i s  discussion of response t o  slowly varying 



42 . 
inputs, no mention has been made about t he  coef f ic ien ts  of t h e  d i f f e r e n t i a l  
equation of t h e  system being controlled.  The e n t i r e  response during 
chat ter  operation has been determined by the coeff ic ients  i n  t h e  switching- 
function argument and the  delays required t o  measure input and output 
derivatives.  A t  t h i s  point t he  nature of t he  d i f f e r e n t i a l  equation being 
controlled i s  important and w i l l  be used t o  determine the  range of inputs 
f o r  which chat ter  operation i s  insured. For the case where the  input i s  
a simple sinusoid, t he  l i m i t  a t  which cha t te r  operation ceases w i l l  be 
c a l l e d  the "breakdown frequency. " Frequencies below t h i s  breakdown fre- 
quency are what have been re fer red  t o  as slowly varying inputs. 

coeff ic ients  of t h e  d i f f e r e n t i a l  equation of the system being controlled, 

This 
frequency depends on the  amplitude of t h e  sinusoidal input and on the  

and only very s l i g h t l y  on the  coef f ic ien ts  of t h e  switching function. 

W 
1. 
k 
Q 

Before going i n t o  t h e  procedure f o r  predict ing the breakdown fre- 
quency, some mention should be made about operation around t h i s  frequency. 
When the breakdown frequency is  reached, the system t r u l y  breaks down i n  
t h a t  the e r r o r  amplitude suddenly becomes very large; it becomes la rger  
than the input amplitude. When operating j u s t  below the  breakdown fre- 
quency, only a small disturbance i s  required t o  make the  system break down. 
Because of t h i s ,  care had t o  be taken t o  insure t h a t  e = e '  = e" = 0 
a t  the s t a r t  of each computer run. A t  lower frequencies it was not nec- 
essary t o  make t h e  i n i t i a l  e r r o r  and i t s  der ivat ives  zero because the 
system would "pull  in" t o  cha t te r  operation qui te  easi ly .  
breakdown frequency the  system p u l l s , i n  more quickly i f  k l  and k2 
are increased, but cha t te r  operation continues i f  k l  and k2 are then 
decreased, except f o r  a very narrow range of frequencies near breakdown. 
It should be at least mentioned here t h a t  depending on the  magnitude of 
t h e  i n i t i a l  error  and the  values of k l  and k2, the system may never 
p u l l  in ,  even i f  t h e  input frequency i s  zero. Such p o s s i b i l i t i e s  are 
t r e a t e d  in chapter 5 of reference 3 where cha t te r  response i s  re fer red  
t o  as "af ter  end point motion." 
cussed l a t e r  i n  the present report .  

Near the  

This type of consideration i s  a l s o  d i s -  

It i s  a l s o  in te res t ing  t o  notice t h a t  r i g h t  up t o  breakdown, the  
expressions developed t o  predict  the e r r o r  amplitudes give qui te  good 
correlation with experimental r e s u l t s  (see f i g .  22). 

The explanation of breakdown is, of course, t h a t  with a f i n i t e  value 
of N the system can reproduce only a f i n i t e  frequency band before satu- 
ra t ion  occurs. "his saturat ion is  bes t  seen i f  f igure 23 i s  developed 
as follows: 
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(103) y"' + 2SRy" + il 2 y' = -jd(e,e',e")N 

where $(e,e' ,e") i s  t h e  switching function ( i n  the  previous examples 
@ = -sgn(e + k l e '  + k2e")). A general switching function 9 is  specif ied 
here because what follows appl ies  for any function 
t i o n  (103) once gives 

p. Integrat ing equa- 

The purpose of t he  control function i s  t o  dr ive the  process i n  such 
a way t h a t  e = e '  = e" = 0; t h a t  is, so t h a t  y = x, 
y" = x". I n  par t icu lar ,  it i s  desired t h a t  

y '  = X I ,  and 

This pa r t i cu la r  expression i s  chosen f o r  comparison because the  l e f t -  
hand s ide i s  given by equation (104) and the  right-hand s ide can be com- 
puted f o r  a given input. For a simple s inusoidal  input of the form 
x = A s i n  UT the  right-hand side, indicated by q2 i n  f igure  23, becomes 
a sinusoid a t  the input frequency as shown i n  the  f igure.  The saw-tooth- 
type function i n  t h i s  f igure  i s  the left-hand s ide of equation (105) as 
given by equation (104) (designated q1 i n  the  f igure) .  It is  b u i l t  up 
of a se r i e s  of s t r a igh t  l i n e s  of slopes +N and must be continuous 
because each term on t h e  left-hand side of equation (104) must be 
continuous . 

During cha t te r  operation the  system has the  power capacity t o  make 
e = e '  = e" = 0 because it does chatter.  
locking a t  t h i s  i s  t o  state t h a t  during cha t te r  operation the  system i s  
capable of making 

possible only when the  slope o f  

of q2. 

A more convenient way of 

q1 x q2 i n  f igure 23; but,  by inspection, t h i s  i s  

q1 i s  grea te r  than the  maximum slope 
That is ,  the  l i m i t  of chatter operation i s  defined by 

+ 2tJRx" + R 2 X'Imax 

Notice that equation (106) is  ident ica l  t o  the  inequal i ty  found i n  dis- 
cussing equation (47) i n  t h e  section "Relay threshold imperfection" of 
third-order systems. For x = A s in  UT equation (106) becomes 

N > A JW x(T;U4- (107) 

In  the  l i m i t  where equation (107) i s  an equality,  it can be solved fo r  
wc, t h e  breakdown frequency. Th i s  w a s  done f o r  various values of t h e  
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equation parameters and the  r e s u l t s  compared favorably with experiments 
as shown i n  t ab le  V I .  Notice t h a t ,  i n  a l l  cases, the  experimental break- 
down frequency i s  greater than the  theo re t i ca l  breakdown. This occurs 
because experimental breakdown was defined by the  cha t te r  completely 
ceasing, the e r ro r  becoming extremely large,  and only two switchings 
occurring per input cycle. A t  frequencies s l i g h t l y  below t h i s  t he  e r r o r  
w a s  reasonably small (as approximately given by equations (97) and (98)) 
and breakdown was not thought t o  have occurred even though cha t te r  opera- 
t i o n  occurred f o r  only pa r t  of each input cycle. 
beyond the frequency l i m i t  given by equation (lO7), but it i s  very d i f -  

Such operation i s  

f i c u l t  t o  observe experimentally a t  j u s t  what point " p a r t i a l  cha t te r"  
begins. One could preassign some a r b i t r a r y  time between switchings such 1 
t h a t  when t h i s  time in t e rva l  i s  exceeded complete cha t te r  operation i s  1 
sa id  t o  have stopped, but t h i s  would be cumbersome and would not give 0 

w 

t h e  same physical significance as complete breakdown, which is ,  after 
a l l ,  what i s  being investigated.  
e r r o r  agrees qui te  wel l  with experiment only u n t i l  t he  theo re t i ca l  break- 
down frequency i s  reached (see f i g .  22). 

This a l so  explains why the  theo re t i ca l  

Reduction of Errors Due t o  F i l t e r  Lags f o r  Both 

Second- and Third-Order Systems 

It was mentioned earlier t h a t  the reason f o r  t he  e r ro r s  discussed 
here i s  that  the lags  encountered i n  finding x '  and X I '  are not t he  
same as those encountered i n  f inding y '  and y". The v a l i d i t y  of t h i s  
statement can be seen by invest igat ing the  lags  i n  x '  and y ' ,  f o r  
example. Consistent with t h e  notation already used, l e t  ?I ,  ? I ,  and 
gi 
switching function. Then by de f in i t i on  

be the ac tua l  delayed terms which are avai lable  f o r  use i m  some 

Further manipulation of t h i s  expression y ie lds  

cy e1 = x l ( t  - T ~ , )  - x l ( t  - Tyi)  + x ' ( t  - Txt)  - y ' ( t  - Tyt )  

o r  

Zf  = e ' ( t  - T ~ ' )  - x ! ( t  - Tyi) + ~ ' ( t  - Txl)  

0 reduces t o  the  f i r s t  of equations (92) .  Y '  = 
which f o r  T 
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Subst i tut ing equation (110) in to  equation (91) and assuming f o r  t he  
moment t h a t  Z'' = eli 

e ( t )  + k e '  t - Ty') 
1 (  1 ( - Ty') - k x '  t - TX,) + k2e"(t) = k x '  t 

1 (  

or  

e ( t )  + k le ' ( t )  + k2e"(t) = k l k ' ( t  - Ty') - x ' ( t  - Tx] + 

k l k ' ( t )  - e ' ( t  - T y 1 I  

But even i n  the  case when undesirable e r ro r s  do occur they are 
always qui te  s m a l l  as compared with t h e  amplitude of the  input and the  
second term on t h e  right-hand side of equation (1l-2) can be neglected as 
compared with t h e  f i r s t  term. (Although e '  and e" due t o  cha t t e r  
o s c i l l a t i o n  may become la rger  than x' and x" because the  cha t t e r  
frequency i s  very high, t he  values of e '  and e" averaged over severa l  
cha t te r  cycles are much smaller than those of x '  and x", respect ively.  
It i s  t h i s  "average" e r r o r  t h a t  i s  being considered here.) 
done, it can be seen by inspection t h a t  the  magnitude of the dr iv ing  term 
i n  equation (112) depends very strongly on the  difference between 
and Tx1 and disappears i f  T,I = T I .  In  t h i s  case it i s  necessary t o  Y 
reconsider t h e  second term on the right-hand side,  but t h i s  would s t i l l  
give a very s m a l l  e r r o r  as compared with the e r ro r s  when 

If t h i s  i s  

Ty' 

Tyi # Txr.  

An iden t i ca l  argument can be used t o  demonstrate how d i f f e ren t  l a g  
times f o r  2'' and 9'' affect the  e r ror  i n  t h e  same way. 

I n  many cases some of these delay t i m e s  can be adjusted t o  be very 
In  t h e  analog-corqmter setup near ly  equal so as t o  minimize the  error. 

t h i s  involved forming x '  - y '  and then f i l t e r i n g  t h e  difference r a the r  
than f i l t e r i n g  j u s t  the  noisy x ' .  This gave the  same delay on both x '  
and y '  and reduced the  e r ro r  considerably. For a third-order system 
t h i s  procedure can only be used t o  a very s m a l l  extent  i n  t h e  
because 
tua t ing  t o  a considerable amplitude a t  t he  cha t te r  frequency. 
t h a t  any delay on y" 
der ivat ive of t h e  output y' 
but t h e  amplitude of t h i s  osc i l la t ion  i s  much smaller than t h e  
Osc i l la t ion  (See f ig .  24 noting that 
t he  delay on t h e  highest  derivative output feedback should be delayed as 
l i t t l e  as possible  ( the  (n  - 1)st derivative f o r  an nth-order system) while 
the  other  der ivat ives  should be delayed by as close t o  the same amount as 
the  corresponding input der ivat ive as possible.  It was noticed t h a t ,  f o r  
t he  third-order system simulated here, the  e r ro r s  caused by 

e'' 

This means 

c i r c u i t  
y", the highest der ivat ive i n  the  switching function, is f luc -  

a c t s  t o  a large extent  as a r e l ay  delay. The first 
a l so  oscillates a t  t h e  cha t te r  frequency, 

y" cha t t e r  
Yehatter = -echat ter) .  In  general, 

x'' f i l t e r i n g  



46 
- 

l ags  were quite s m a l l  because the  value of 
t o  s tep inputs was s m a l l  (k2 = 0.10) and 
very large before breakdown occurred. 

k2 t h a t  gave good response 
03 was usual ly  s m a l l  and never * 

Third-Order Theory i n  Laplace Notation 

The equivalent l i n e a r  system of equation (93) can e a s i l y  be put i n to  
Laplace transform notation, which f o r  many engineers i s  a more usefu l  
form. Equation (93) i s  then wr i t t en  

e(1 + klp + k2p2) = -klpx (1 + i m p  - 1) - k2p2X(' + imp - 1) (113) 

f o r  t h e  case where x '  and x" are given by equations (89) and (90) 
with the approximation 

where 

and similarly f o r  Tm. 
same results as the  previous approximations but  very near ly  t h e  same 
r e s u l t s  for s m a l l  values of Tli and T2i. 

This approximation w i l l  not give exact ly  t h e  

Simplifying equation (ll?), it becomes 

e 1 + klp + k2p2) = ( 

For the  case where T,, = 0 (only x '  f i l t e r i n g ) ,  the  closed-loop t rans-  
fer  function of the  equivalent l i n e a r  system i s  

2 
w 

W 
1 
1 
0 
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For the case where Tnn = 0 (only XI' f i l t e r i n g ) ,  t h e  closed-loop 
t r a n s f e r  function of t he  equivalent l i nea r  system is  

X 

STEP RESPONSE OF THIRD-ORDER CONTACTOR SYSTEM 

W I T H  TWO COMPLEX ROOTS 

In  the sect ion e n t i t l e d  "Considerations f o r  Designing and Comparing 
Contactor Systems" it was shown t h a t  contactor systems which a t  f irst  
might appear t o  be qui te  d i f f e ren t  are ac tua l ly  qui te  similar.  It was 
a l so  shown t h a t  a large pa r t  of the response of a contactor system i s  
chat ter  response i n  which t h e  driving term rapidly changes sign a t  a 
frequency determined by the imperfection of t h e  r e l a y  o r  s i m i l a r  nonlinear 
device. The period and amplitude o f  these cha t te r  e r r o r s  were then deter-  
mined i n  considerable d e t a i l  and a fu r the r  consideration of chat ter  
response, but from the  standpoint of f inding the  e r r o r s  t ha t  r e s u l t  from 
f i l t e r i n g  delays r a t h e r  than from relay imperfections, followed i n  the 
next sections.  A more complete study of t h e  response of a contactor sys- 
t e m  must include response i n  which chatter does not occur. Unless spec i f ic  
information i s  avai lable  as t o  the nature of the expected input, d i s -  
cont inui t ies  of the e r ro r  and i t s  derivatives a r e  the  most sa t i s fac tory  
choices of s i t ua t ions  f o r  which the  response i s  not e n t i r e l y  cha t te r  
response. That is ,  i f  a system gives a cha t te r  response with small e r r o r  
and i s  able t o  recover from input o r  e r r o r  d i scont inui t ies  quickly, then, 
within i t s  saturat ion l imitat ion,  it w i l l  respond very well  t o  a random 
input. 

Optimum Response 

I n  recent years there  has been a grea t  deal  of work done o n ' t h e  
response of contactor systems t o  step inputs.  Most of t h i s  work i s  cen- 
tered around the  study of optimum response, which has been defined 
as the  response t h a t  reduces the error and i t s  der ivat ives  t o  zero i n  the 
minimum time af ter  a s tep command. A more complete def in i t ion  of optimum 
response can be given i n  terms of the e r r o r  phase space. 

For a system described by an nth-order d i f f e r e n t i a l  equation, t h e  
coordinates of t h i s  e r r o r  phase space a r e  the  e r r o r  and i t s  der ivat ives  
up t o  the  ( n  - 1)st. 
point i n  t h i s  phase space i s  suff ic ient  t o  define completelythe state 

The information given by the coordinates of any 
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o r  phase of the  e r ro r  motion. A s  t he  motion of a system proceeds i n  
t i m e ,  the e r ror -s ta te  point t r aces  out a path i n  the phase space. For 
any given system, t h i s  path o r  t r a j ec to ry  i s  defined by the system d i f -  
f e r e n t i a l  equation. The phase space i s  completely f i l l e d  w i t h  possible 
t r a j e c t o r i e s  f o r  each system, each t r a j ec to ry  depending on t h e  i n i t i a l  
conditions of t he  motion. 
capable of taking the  e r ror -s ta te  point from any locat ion i n  t h e  e r r o r  
phase space in to  the o r ig in  along the system's t r a j e c t o r i e s  i n  the mini- 
mum time, within the l imi t a t ion  of  the system's sa tura t ion  values. 

If a system i s  t o  be optimum, it must be 

Second-order example.- A simple second-order example w i l l  demonstrate 
the def in i t ion  of the e r r o r  phase space. One of t he  equations s tudied by 
Bushaw i n  reference 4 is  

y" = -ap(e,e') (119) 

where a represents the  sa tura t ion  value of the  system and 9 i s  a 
switching function which takes on the  values 1 or  -1 and i s  t o  be deter- 
mined t o  give optimum response. Physically, t h i s  equation may be i n t e r -  
preted as t h e  equation of a f r i c t i o n l e s s  motor whose sha f t  posi t ion i s  
y. "he sa tura t ion  constant a would then be the r a t i o  of t he  sa tura t ion  
torque of t h e  motor t o  the ro to r  i n e r t i a .  
simple system i s  given i n  figure 25. 
e r r o r  i s  found by subs t i tu t ing  
f o r  a step input, where x'' = 0, it i s  

The block diagram f o r  t h i s  
The d i f f e r e n t i a l  equation f o r  t he  

y" = x'' - e" in to  equation (ll9), and 

e'' = a$(e,el)  (120) 

To f ind  the  error-phase-plane t r a j ec to r i e s ,  t h i s  equation can be 
wr i t t en  

which for  9 = 1 o r  -1 (one cannot in tegra te  over a d iscont inui ty  i n  9, 
of course) can be integrated inmediately t o  

where eo i s  the  integrat ion constant. This equation gives two families 
of parabolas wi th  t h e i r  ve r t i ce s  on the e axis, one family concave 
upward f o r  
shown i n  f igure  26. 
parabolas. 

9 = 1 and the other  family concave downward f o r  
A l l  motion must be along one o r  more of these 

$ = -1, as 

If t h e  shaft posi t ion i s  a t  y = 0 and a s t e p  input command of 
x = xo i s  suddenly applied, the corresponding i n i t i a l  value i n  the e r r o r  

W 
1 
1 
0 

. 
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phase plane i s  a t  a point  
e axis, as indicated by the point eo. Bushaw shows iiliit  ts reduce 

t h i s  e r ro r  t o  zero with no overshoot ( tha t  is, t o  move in to  t h e  or ig in)  
i n  the  minimum t i m e ,  t he  motion should move along the  9 = -1 t r a j e c t o r y  
t h a t  passes through point eo (path eo&) u n t i l  t h e  $ = 1 t r a j e c t o r y  
tha t  passes through the  or ig in  ( a rc  0s) i s  Intersected.  A t  t h i s  point,  
9 should change t o  1 and t h e  motion w i l l  proceed along t h i s  "zero 
t ra jec tory"  u n t i l  the  e r ro r  i s  zero. 
input, 9 should change from 1 t o  -1 a t  the  zero t r a j e c t o r y  m. The 
l i n e  SOV i s  ca l led  the  optimum switching l i ne .  
l i n e  9 i s  t o  be taken as -1 and below it, = 1. Thus f o r  t h i s  
example 

xo u n i t s  out from the  o r ig in  along t h e  

- 

Similarly, f o r  a negative s tep  
- 

For any point above t h i s  

popt = -sgn(2ae + e ' l e l l )  

In t h i s  example, the above procedure in tu i t i ve ly  gives the  proper optimum 
response. I n  order t o  move the  motor shaf t  through an angle xo i n  t h e  
minimum time with no overshoot, one simply appl ies  f u l l  torque u n t i l  half  
of t he  s tep  i s  recovered and then applies f u l l  reverse  torque so t h a t  the  
system w i l l  be a t  r e s t  when the error  i s  zero. Bushaw fu r the r  shows, 
however, t h a t  no matter what the  i n i t i a l  conditions are, t h a t  is, no 
matter a t  what point the  motion originates i n  the  e,e'  plane, optimum 
response i s  obtained by switching according t o  equation (123) as one can 
eas i ly  see by s t a r t i n g  a t  a rb i t r a ry  points and following acceptable t ra -  
j ec to r i e s  in to  the  or igin.  
f o r  t h i s  system a l so  f o r  a ramp input x '  = x f o  with any in i t i a l .  
conditions. 

Therefore equation (123) gives optimum response 

Bushaw a l so  discusses optimum response f o r  t he  equation 

y" + DY' = -a@(e,el) (124) 

The optimum switching l i n e  f o r  t h i s  equation i s  a curve qui te  s i m i l a r  i n  
nature t o  the parabolas Pound f o r  equation (119). It i s  again formed by 
the  two halves of the  two zero t r a j ec to r i e s  of t h e  d i f f e r e n t i a l  equation 
on which motion proceeds toward t h e  or ig in  ( see  appendix D )  . 
t h i s  switching l i n e  i s  optimum f o r  motion or iginat ing from any point i n  
the  e r ro r  phase plane, but it i s  not optimum f o r  a ramp input x '  = x f o .  
This i s  because y '  i s  present i n  the d i f f e r e n t i a l  equation so t h a t  
when the  d i f f e r e n t i a l  equation i n  e i s  formed, an x' term appears on 
the  right-hand s ide,  thus 

Again, 

This means t h a t  although x" = 0 for a ramp input, a b i a s  of D x ' ~  
e x i s t s  on the forcing s ide of equation (125), thus making inva l id  the  
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considerations t h a t  were made i n  f inding the  optimum switching l i n e  
assuming x" = x' = 0. This d i f f i c u l t y  could be avoided by feeding x t 0  * 

i n t o  the device t h a t  forms t h e  switching l i n e  i n  such a way as t o  change 
t h e  scale f ac to r s  i n  the  upper and lower half  planes as a function of 
x ' ~ .  This would provide optimum response f o r  ramp,inputs even with t h e  

Dy' The authors 
have, however, found no repor t s  of t h e  use of such a scheme. 

term present i n  t h e  system equation (see appendix D )  . 

Discussion of third-order system.- In  the  second-order examples of 

W 
1 
1 
0 

optimum response j u s t  given, only one switching i s  required t o  go from 
any point i n  the  e r ro r  phase plane in to  the  o r ig in  unless, of course, 
the  i n i t i a l  point happens t o  l i e  on a zero t r a j e c t o r y  i n  which case no 
switching i s  required. If the  homogeneous equation has a res tor ing  force 
term, more than one switching may be required (see ref .  8, p. 155). 
Bogner and Kazda, i n  reference 9, show t h a t  f o r  t he  nth-order equation 

dne - =  
dt" 

The number of switchings required t o  
t o  zero i n  the minirnum time from any 
n - 1. Therefore, f o r  a third-order 

re turn  t h e  e r r o r  and i t s  der ivat ives  
point i n  the  e r r o r  phase space i s  
system of t h i s  type, two switchings 

a re  usually required i n  order t o  give optimum response. 
a more general type of third-order system also,  but no proof of t h i s  
statement w i l l  be given here. Another example w i l l  serve t o  show how 
these switchings occur and what so r t  of switching function 
t o  give optimum response. A s implif ied descr ipt ion of the  pi tching 
motion of a missile o r  a i r c r a f t  i s  given by a third-order equation and 
has received a great  dea l  of a t t en t ion  i n  recent years. 
analog-computer un i t s  where i s  a voltage ( the  conversion from problem 
t o  computer un i t s  i s  given i n  appendix C )  such an equation can be wr i t t en  

This holds f o r  

9 i s  required 

In  terms of 
y 

The procedure for f inding the  optimum switching function for a 
third-order system i s  merely an extension of t h a t  used f o r  second-order 
systems. There i s  considerably more d i f f i c u l t y  i n  t h e  third-order case, 
however, because one must work i n  a three-dimensional e r r o r  phase space 
r a the r  than a phase plane, and the  switching function must depend on 
e" as well as on e '  and e. To begin with, equation (127) must be 
changed into an equation f o r  t he  e r r o r  e by subs t i tu t ing  y = x - e: 

e"' + 2 c ~ e "  + R e '  = x'" + 2 5 ~ ~ "  + R x '  + R vra$ (128) 2 2 2 
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To f ind the optimum response t o  a step input, one can take 
Xln = XI' = x '  = u so t na i  equat loi i  (128) ~ ~ e m e a  

The f i rs t  s t ep  i n  finding the optimum switching function f o r  such 
an equation i s  t o  notice that  only two space curves which a r e  a solut ion 
t o  equation (129) pass through the origin of the  e r r o r  phase space, one 
f o r  $4 = 1 and t h e  other f o r  fi = -1. This means that when the  e r ror -  
state point passes from some i n i t i a l  posi t ion i n t o  the or ig in  ( i .e . ,  the 
e r r o r  and i ts  derivatives are reduced t o  zero) i t s  las t  b i t  of motion 
must be along one of these zero t r a j ec to r i e s .  Therefore, the motion 
must be such t h a t  t h e  path of t h e  error-s ta te  point i n t e r s e c t s  one of 
these curves and furthermore, it must i n t e r sec t  one of t h e  two branches 
t h a t  goes toward the origin.  It can be proven (see ref. 10) tha t ,  i n  
order f o r  the response t o  be optimum, the  system must switch when the  
zero t r a j e c t o r y  i s  intersected.  

This indicates that  the last  ( o r  second f o r  t h i s  third-order example) 
switch point i s  on the zero t ra jectory.  
zero t r a j e c t o r i e s  f o r  equation (129) wi th  
the branches of t he  zero t r a j ec to r i e s  that  lead away from the  or ig in  f o r  
pos i t ive  time and the so l id  l i n e s  lead toward the or igin.  
s o l i d  l i n e s  are symmetrical about the or igin,  one side being with = 1 
and t h e  other with 
would occur on one of the so l id  branches. I n  order t o  f i n d  the  first switch 
point,  notice that  motion between the first and second switch points must 
be along a t ra jec tory  which terminates on the so l id  zero t r a j e c t o r i e s .  It 
i s  not d i f f i c u l t  t o  visual ize  that the sum t o t a l  of a11 the possible t ra-  
j e c t o r i e s  t h a t  terminate on the solid zero t r a j e c t o r i e s  defines a surface 
i n  the e r ro r  phase space, because only one t ra jec tory  tha t  i s  a solut ion of 
t he  d i f f e r e n t i a l  equation can pass through any given point on the  zero tra- 
jectory.  
terminates on the so l id  zero t ra jec tory  must have 
of the zero t ra jectory,  since a switching occurs a t  the intersect ion.  
Again, t h i s  surface i s  symmetrical about t h e  origin,  one half  of it ter-  
minating on each branch of the solid zero t ra jectory.  Also, i n  order t o  
ge t  off t h i s  surface (i .e. ,  t o  go away from the  or ig in  i n  negative time), 
one must again follow a path w i t h  opposite $4, t ha t  is, re turn  t o  t h e  
same sign of t ha t  the  corresponding s o l i d  zero t r a j e c t o r y  has. This 
means tha t  the f irst  switch point occurs on t h i s  "switching surface." It 
i s  not d i f f i c u l t  t o  visual ize  tha t  the sum t o t a l  of a l l  t r a j e c t o r i e s  t h a t  
terminate on t h i s  surface f i l l s  the e n t i r e  phase space. 

Figure 27 shows two views of the 
5 = 0. The broken l i n e s  are 

Notice t h a t  t he  

9 = -1. For t h i s  example, the second switch point 

There i s  only one r a the r  than two because the t r a j e c t o r y  that  
9 of the opposite sign 

The sequence of events, then, i n  driving the state point from any 
posi t ion i n  the phase space i n t o  the or ig in  i s  as follows: The motion 
proceeds with 9 = 1 o r  $ = -1 (depending on which s ide of t he  
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switching surface the  i n i t i a l  point  l i es )  u n t i l  t he  switching surface 
i s  intersected; here fJ changes s ign and t h e  motion proceeds along t h e  
switching surface u n t i l  t h e  s o l i d  zero t r a j e c t o r y  i s  intersected;  and 
a t  t h i s  point  another switching occurs and t h e  motion proceeds i n t o  the  
or ig in .  No rigorous proof i s  given here t h a t  t h i s  sequence indeed gives  
optimum response. For more d e t a i l s  see t h e  paper by Rose, reference 10. 

Bypassing t h i s  point of r igor ,  t he  next s t ep  i s  t o  f i n d  t h e  equation 
of the  switching surface. 
with 5 = 0, t he  d i f f e r e n t i a l  equation i s  

Returning t o  the  example of equation (129) 

The general solution of t h i s  equation i s  

e = A + B cos Rr + C s i n  C ~ T  + $Vra7 (131) 

To f ind  the zero t r a j ec to r i e s ,  t he  condition t o  be imposed i s  t h a t  t he  
state point must pass through the  o r ig in  a t  the  end of t he  motion which, 
f o r  convenience, w i l l  be defined by T = 0, t h a t  is ,  
e(0)  = e ' ( 0 )  = e"(0) = 0. Imposing these  conditions, t he  parametric 
equations of t he  zero t r a j e c t o r i e s  are 

W 
1 
1 
0 

In  order t o  f i n d  the  i n i t i a l  conditions f o r  t h e  t r a j e c t o r i e s  t h a t  i n t e r -  
s ec t  these zero t r a j ec to r i e s ,  t h a t  i s ,  f o r  t h e  t r a j e c t o r i e s  t h a t  car ry  
the  state point from t h e  f i r s t  t o  the  second switch point,  one merely 
proceeds o u t  from the  o r ig in  alonl: t he  zero t r a j e c t o r y  i n  rlegative t i m e  
u n t i l  t he  second switch point i s  reached., If t h e  t i m e  of t r a v e l  on the 
zero t r a j ec to ry  i s  T ~ ,  then the  " i n i t i a l "  Conditions desired are found 
by subs t i tu t ing  -rs i n to  equations (132) : 

\ 

-v 7 + -  s i n  R T ~  r a  s Q 
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To avoid confusion, only half of the switching surface w i l l  be 
found, t h e  other  half being s y ~ ~ ~ l i e t l - i c a l  z%ut t h e  n r i g i n .  
half  t h a t  terminates on the $ = 1 zero t ra jec tory .  Then t h e  general 
solution f o r  the next t o  l as t  t ra jectory i s  

Consider t he  

Using t h i s  equation with 
- r =  - T ~  i n  eqs. (132)) the constants A1, B1, and C1 a r e  found by 
imposing equations (133) at 
next t o  last  t ra jec tory  are then 

T = 0 at the second switch point ( i .e. ,  when 

T = 0. The parametric equations of t h e  

e '  = -Vra - Vracos R ( T ' - T )  + 2vr,COS QT 

e" = -v,,R s i n  R ( T - T )  - 2 ~ ~ ~ i - i  s in  RT 

(135) 

with parameter T. If one considers t h e  e n t i r e  family of such t r a j e c -  
t o r i e s ,  one t ra jec tory  f o r  each value of T ~ ,  the  r e s u l t  i s  the optimum 
switching surface. Equations (135) can be considered, then, as the  
parametric equations of half  of t he  optimum switching surface, with 
parameters T~ and T. A s  t h e  equations a r e  s e t  up, T~ takes on posi-  
t i v e  values (negative time) and T takes on negative values ( a l so  nega- 
t i v e  t ime).  These parameters could be eliminated t o  f i n d  a s ingle  equa- 
t i o n  between e, e ' ,  and e" t h a t  would represent the optimum switching 
surface, but t h i s  w i l l  not be done here because the authors wish only t o  
give t h e  reader a visual  picture  of an optimum switching surface and t o  
out l ine  the s teps  involved i n  finding one. 

?"ne use of such a switching surface gives opthum response f o r  
equation (127) only f o r  a s t ep  input although there  i s  no r e s t r i c t i o n  
on t h e  i n i t i a l  conditions; t h a t  i s ,  t he  i n i t i a l  state point can assume 
any posi t ion i n  the e r ro r  phase space. If x '  and XI'  were fed  i n t o  
t h e  device which forms the switching surface, and operations corresponding 
t o  the  scale  f ac to r  changes suggested f o r  a second-order system were made, 
t h i s  system could be made optimum for  s t ep  inputs of ve loc i ty  and acceler- 
a t i o n  as w e l l  as for  s t ep  inputs of posit ion.  

Conparison of Optimum and "Linear" Switching 

The problem of finding the optimum switching surface f o r  equation (129)  
i s  not t o o  d i f f i c u l t .  Perhaps the most convenient way of doing it would 
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be t o  actual ly  go through a l l  t h e  steps out l ined above (using eq. (130) 
r a the r  than eq. (129)) with the  problem set up on an analog computer. 
Negative time could be simulated by changing the  signs of t h e  appropriate 
terms i n  the  d i f f e r e n t i a l  equation, and t h e  resu l t ing  t r a j e c t o r i e s  could 
be recorded. 
switching function, however, i s  considerably more d i f f i c u l t .  Three- 
dimensional function generators are complicated and cumbersome and con- 
siderable cost  would be involved i n  developing one small enough t o  be 
car r ied  i n  an a i r c r a f t .  "Linear" switching as used i n  equation (47) is ,  
on t h e  other hand, quite easy t o  obtain i n  an ac tua l  i n s t a l l a t i o n  as can 
be seen by the simple c i r c u i t s  involved i n  f igure 17. The obvious ques- 
t i o n  i s ,  j u s t  how much i s  l o s t  i n  using l i n e a r  switching? 
question, s tep  response t i m e s  f o r  optimum and f o r  l i nea r  switching were 
found using an analog-computer simulation. 

The problem of building a, device which forms t h i s  complicated 

To answer t h i s  

Optimum response t i m e . -  Fortunately, it was not necessary t o  c rea te  
an optimum switching surface i n  order t o  f ind  optimum response t i m e s  
because l inear  switching gives optimum response i f  the switching coef f i -  
c ien ts  kl and k2 are  set t o  spec i f ic  values f o r  each step. For any 
s ingle  optimum response, only two points on the  optimum switching surface 
are used f o r  switching so  t h a t  a l l  t h a t  i s  required f o r  optimum response 
f o r  a specific input i s  a surface which passes through these two points.  
Since l inear  switching gives switching on a plane through the  o r ig in  of 
t h e  e r ro r  phase space, one merely ad jus t s  t h e  angle of t h i s  plane so 
t h a t  it passes through the  two optimum switch points f o r  each input. 

The values of k l  and k2 t h a t  give optimum response f o r  each 
s tep  were found very quickly by t r i a l  and e r r o r .  The value of e versus 
e '  w a s  observed on an oscilloscope and k l  was adjusted af ter  each 
computer response t o  a s t ep  input u n t i l  a f t e r  two switchings t h e  e r ror  
was reduced t o  very nearly zero. Then e versus e" was observed and 
k2 was adjusted u n t i l  e'' was a l s o  reduced t o  zero after two switchings. 
A f t e r  t h i s ,  only s m a l l  changes i n  k l  and k2 had t o  be made t o  insure 
t h a t  e ,  e ' ,  and e" were a l l  reduced t o  zero af ter  two switchings. 
Figure 28(a) shows p l o t s  of kl and k2 versus s t ep  height f o r  R2 = 2.79 
and R2Vr, = 47.3 v o l t s  with tJ as a parameter. Figure 28(b) i s  a 
similar plot f o r  O2 = 1.35 and R2Vra = 23.2 v o l t s .  

Figure 28(a) shows very c lear ly  t h a t  k l  and k2 repeat a f t e r  a 
ce r t a in  step height f o r  ( = 0. The value of the  s t e p  height a t  which 
the repe t i t ion  begins i s  equal t o  t h e  voltage through which t h e  e r ro r  
passes during one period of the  system's na tura l  frequency. I n  f igu re  27, 
of the  zero t r a j ec to ry  f o r  [ = 0, t h i s  corresponds t o  t h e  e r ro r  sparined 
by one loop  of t h e  t r a j ec to ry  s p i r a l  of 

65.5 v o l t s  checks very well with the  experimental value of 67 volt:,. 

2rr - vra. The calculated vzL1ic of 
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R 
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reason f o r t h e  r epe t i t i on  i n  kl and k2 i s  tha t  f o r  s t ep  inputs  l a rge r  
than t h i s  value the  e r ro r - s t a t e  point comes i n  on a s p i r a l ,  pith a ir? 
figure 27, on which no switchings a re  required unti.1 t h e  e r r o r  i s  within 
the  f i r s t  loop of the  zero t ra jec tory .  Somewhere within t h i s  loop, t h e  
e r ror -s ta te  point comes t o  rest with e '  = e" = 0 as shown by point  R .  
This occurs because a l l  of the  step-response experiments were made with 
e' '(0) = e ' ( 0 )  = 0, t h a t  is ,  t he  motion always s t a r t e d  at  r e s t .  
from t h i s  point on i s  t h e  same as i f  t he  motion had s t a r t e d  a t  point  
hence t h e  switching requirements a re  the  same. Also, a l l  t he  t r a j e c t o r i e s  
t h a t  a r e  solutions t o  equation (130) with e ' ( 0 )  = e"(0) = 0 a re  cycloids 
iden t i ca l  t o  the  zero t r a j e c t o r i e s  except t h a t  they are displaced i n  the  
e r r o r  phase space, s o  t ha t  t he  exact r epe t i t i on  of kl and k2 r e s u l t s .  
That no switchings are required u n t i l  t h e  e r ro r  i s  less than 

follows because the  d i f f e r e n t i a l  equation i s  such t h a t ,  providing t h e  
e r ro r  starts a t  r e s t ,  the  e r r o r  veloci ty  i s  always less than 2Vra, and 
t h i s  ve loc i ty  can always be b u i l t  up or reduced t o  zero within one loop 
01 t he  s p i r a l .  The accelerat ion i s  s imi la r ly  bounded. 

Motion 
R, 

2s  - Vra 
R 

For I, # 0, kl and k2 do not repeat but r a the r  damp out t o  con- 
s t a n t s  f o r  la rge  inputs.  This occurs because, f o r  la rge  inputs,  t he  
osc i l l a to ry  motion damps out due t o  the presence of the  damping and t h e  
system t r a v e l s  toward the  o r ig in  a t  the  runaway ve loc i ty  This 
means tha t  no matter how la rge  the  input s tep  was, and no matter what 
t he  i n i t i a l  conditions were, by the  ' t i m e  t he  e r ror -s ta te  point i s  close 
enough t o  t he  or ig in  f o r  switching t o  be required the  s t a t e  point comes 
i n  on the  same l ine ,  namely, path b i n  f igure 27, defined by e '  = Vra 
and e'' = 0 f o r  a negative s tep  input. For a system with damping then 

( the  damping need not be very large, as seen i n  f i g .  28(a) )  i f  27( - V r a  

i s  ra ther  s m a l l  r e l a t i v e  t o  t he  magnitude of t he  expected s t ep  inputs,  
diere i s  no pa r t i cu la r  advantage i n  using optimum switching over l i n e a r  
switching because optimum response r e s u l t s  f o r  these inputs i n  e l t h e r  
case. 

V r a .  

R 

c 

Figure 29 gives a p lo t  of optimum response t i m e s  versus s t ep  height, 
again with 5 as  a parameter. These response times were found using 
t h e  analog computer. A quick one-point check of t he  accuracy of these 
p l o t s  can be made by checking the  response time f o r  t he  case where 
t o  a s t ep  input of 

response time i s  merely the period of  the  na tura l  v ibra t ion  o r  
For f igure  29(a),  
response time of 3.75 seconds shown i n  the  p lo t .  
comparison i s  5.40 t o  5.45 seconds, respectively.  

5 = 0 
2rr - V r a  vo l t s .  For t h i s  pa r t i cu la r  s i tua t ion ,  t he  

2 s / R .  
R 

2rr /R = 3.76 seconds which checks very w e l l  with the  
For f igure  29(b) the  



Response time with l i nea r  switching.- Figure 30 shows t h e  response 
t i m e s  with l i n e a r  switching f o r  the  same system discussed above. Each - 
curve o f  response times for l i nea r  switching i n  these f igures  i s  f o r  a 
f ixed  pa i r  of values of kl and k2. The parameter shown on the  curves 
i s  the s tep  voltage f o r  which the  spec i f ic  combination of kl and k2 
gives optimum response, hence the  l i n e a r  switching curves a re  tangent 
t o  the  optimum response t i m e  curve at these values of s t ep  height.  In  
determining the  response time with l i n e a r  switching, time was measured 
from the in s t an t  the  s tep  was imposed t o  t h e  time when e and e '  were 
zero and e" was less than a small value. In  some respects  t h i s  c r i t e -  
r i on  might have made the  f igures  somewhat misleading because many times 
the  error was very s m a l l  and was approaching zero asymptotically o r  i n  
an osc i l la tory  fashion some time before e, e ' ,  and e" a l l  became 
zero. 
input of 60 v o l t s  f o r  l i n e a r  switching optimized a t  a s tep  input of 
30 vol t s .  I n  t h i s  response, t h e  e r ro r  was qui te  s m a l l  a few ten ths  of 
a second before the  optimum response t i m e  had elapsed, although e,  e ' ,  
and e" were not a l l  zero u n t i l  about a second l a t e r ,  and during t h i s  
second the e r ro r  never did become very la rge .  

An example of t h i s ,  f igure  3 l (a ) ,  shows the  response t o  a s t ep  

Two combinations of kl and k2, one which gave optimum response 
f o r  a l5-volt s tep  input and the  other  f o r  a 30-volt s tep  input, are 
shown i n  f i gu re  3O(a). 
f o r  5 = 0. 
kl and k2 were optimized, t he  response w a s  f i r s t  osc i l l a to ry  (before 
cha t te r )  and then sluggish ( cha t t e r  operation, as exemplified i n  
f i g .  31 (a ) ) .  For inputs l e s s  than the  optimized s tep,  the  response was 
sluggish a s  shown i n  f igure  3l(b). 
a t  30 volts, the  l a rges t  difference between t h e  response t i m e  of t h i s  
system and optimum response t i m e  occurs a t  60 v o l t s  f o r  t h e  range of 
inputs studied. 
response t o  a 6 0 - ~ 0 1 t  s t ep  passed very close t o  zero before the  optimum 
switching time had elapsed and it became only s l i g h t l y  grea te r  before 
it w a s  reduced t o  zero (see f i g .  3 l (a ) ) .  Therefore, i f  t h i s  small under- 
shoot i s  not detrimental  f o r  t he  system application, t h e  la rge  difference 
i n  response t i m e s  indicated i n  f igure  3O(a) i s  not a good comparison. 

Also shown i s  the  curve of optimum response times 
In  general, f o r  s tep  inputs grea te r  than the  s t e p  f o r  which 

For the  l i n e a r  switching optimized 

But r e c a l l  t h a t  t h e  e r r o r  i n  the  l i n e a r  switching 

In f igure 3O(b) f o r  5 = 0.3 t h e  difference between optimum 
response and response with l i n e a r  switching optimized a t  30 v o l t s  i s  so 
s m a l l  that  f o r  many p rac t i ca l  purposes it could be neglected. 

Quasi-Optimum Response 

Between optimum switching With i t s  complicated switching surface 
and l inear  switching which i s  optimum f o r  motion or ig ina t ing  only from 
spec ia l  points i n  the  e r r o r  phase space there  would seem t o  be much room 
f o r  a compromise switching function. For lack of a b e t t e r  name, such a 
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compromise system W i l l  be ca l led  "quasi-optimum" switching. 
1l1lrn-h~~ n f  slwh schemes t h a t  can be t r i ed  has no end, but  a l l  of them are 
merely attempts t o  form a switching function which approaches the shape 
of t h e  optimum switching surface without the  necessi ty  of using a three-  
dimensional function generator. (One s igni f icant  example of what might 
be ca l l ed  quasi-optimum response is  t rea ted  i n  d e t a i l  by Schmidt and 
T r i p l e t t  i n  ref.  11.) 

The possible  

Figure 28(a),  which shows how kl and k2 must vary with s t e p  

Notice t h a t  t he  
required f o r  a given change i n  s t e p  height  is  

height i n  order t o  obtain optimum response, gives  an ins ight  as t o  one 
p o s s i b i l i t y  f o r  a quasi-optimum switching function. 
percent change i n  k2 
much grea te r  than the  percent change required i n  
suggests t h a t  one might use a variable r a t h e r  than constant 
t he  switching function takes  on t h e  form 

k l .  This observation 

k2 so t h a t  

+ k l e '  + k2(e,e1)e ' '  1 ( 136 1 

A s  it stands, t h i s  switching function i s  no improvement over optimum 
switching as far as reducing complications i s  concerned because a three-  
dimensional function generator would be required t o  form 
Therefore k2 may be made a function of e i t h e r  e o r  e ' ,  but  not of 
both, o r  the  purpose would be defeated. 

k2(e ,e ' ) .  

Recal l  now t h a t  i n  the  b r i e f  discussion of optimum versus l i nea r  
switching it was concluded tha t ,  i f  the system has na tura l  damping pres- 
ent ,  t h e  gap between optimum and l inear  switching i s  not very wide (see 
f i g .  3O(b)). 
most bene f i c i a l  t o  concentrate f i rs t  on the  case where 
case, experiments were made by taking k2 as a function of e, but not 
much success was obtained. Experiments with k2 taken as a function 
of e '  were considerably more successful. An explanation of t he  deter-  
mination of t he  function k2(e ' )  
worked wel l  while k2 as a function of e was unsat isfactory.  

In  discussing quasi-optimum switching, then, it w i l l  be 
( = 0 .  For t h i s  

w i l l  immediately show why t h i s  function 

In  forming k2 e i t h e r  as a function of e o r  as a function of e ' ,  
the  da t a  i n  f igure  28(a) obviously had t o  be modified so t h a t  
be p lo t t ed  against  e or  e '  a t  switching r a the r  than against  i n i t i a l  
s tep  height,  because, once the  motion i s  i n  progress, a switching func- 
t i o n  has no way of knowing what t he  i n i t i a l  conditions were. 
t h i s  modification, e and e '  at  t h e  f irst  switch point were determined 
f o r  each s tep  input with optimum response, using the  computer. The 
desired k2 as a function of e t s ,  f o r  example, was then p lo t t ed  point 

by point by taking the value of k2 
ure 28(a)  and p lo t t ing  t h i s  against  the  a t  switching found f o r  t h e  
same s t e p  height.  The resu l t ing  function i s  shown i n  figure 32. 

k2 could 

To make 

f o r  a given s t e p  input from f i g -  
e '  



The values of k2 shown i n  f igure 28(a) give optimum response only 
i f  k2 remains constant throughout t h e  response. I f  k2 i s  taken as 
a function of e '  o r  e, then it w i l l  vary continuously throughout t he  
response. If t h i s  i s  the case, how can the  function found by the  above 
procedure be expected t o  give optimum response? I n  t h e  case of k2(e) 
as determined above, the response is  indeed not optimum, but f o r  
t he  response was found t o  be optimum o r  very nearly so f o r  any s t ep  i n  
t h e  t e s t  range of from 0 t o  60 vo l t s .  
because of t he  symmetry of t he  optimum response t r a j e c t o r y  f o r  ( = 0 
as shown i n  f igu re  33. The lower curve i s  the e , e '  projection of a 
typ ica l  optimum-response t r a j e c t o r y  and t h e  upper curve is  the e,e" 
projection. The sharp corners i n  t h e  e,e" projection occur, of course, 
a t  the switch points.  Notice t h a t ,  since the e , e '  projection i s  sym- 
metrical  about an e r ro r  equal t o  half  of the s t ep  height and the  switch 
points are s imilar ly  symmetrical, t he  value of e '  a t  both switch points  
i s  the  same. Therefore, even though k2 var ies  continuously throughout 
t h e  motion, it always repeats i t s e l f  a t  the switch point so t h a t  as far 
as the  switching i s  comerned, might j u s t  as well have been a con- 
s t a n t  equal t o  the value of k2 a t  t h e  f i r s t  switch point. But i n  the 
above procedure, k2 was chosen such t h a t  a t  t h i s  f i rs t  switch point it - 
takes  on the proper value t o  give optimum response i f  it were allowed 
t o  remain constant. The motion resu l t ing  from using t h i s  function f o r  
k2 i s  n o t  exactly optimum except f o r  selected s t ep  values because k l  
was not made a function of e ' ,  but, since k l  does not change much with 
s t ep  height, the motion was very close t o  optimum. 

k2 (e ' )  

This optimum response r e s u l t s  

k2 
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The c i r c u i t  used t o  form the product k2(e ' )e"  
The function k2 (e ' )  
break points a r e  indicated by crosses i n  f igu re  32. 
points  taken from f igure 28(a).  
function generator, t he  input t o  it was taken as 2e '  ra ther  than e ' .  
The scale f a c t o r  on t h e  output k2 of t h e  function generator was taken 
as 50 volts/sec2, t h a t  i s ,  k2 = 50k2. Unfortunately, the mul t ip l ie rs  
available fo r  these experiments had a considerable degree of d r i f t  and 
nonlinearity, but s l i g h t  modifications of t h e  function 
fo r  t h e  nonlinearity, and the  d r i f t  was not ser ious enough t o  a f f e c t  gen- 
eral  conclusions about t h e  experiments. 

i s  shown i n  f igu re  34. 

The c i r c l e s  a r e  data  
In  order t o  u t i l i z e  a wider range of t he  

was formed with a diode function generat,or whose 

- 
- 

k2( e ' ) compensated 

A s  was mentioned earlier, t h i s  switching scheme gave very good 
response f o r  s tep inputs. The value of k l  used f o r  these experiments 
was an average value of 
s t ep  of 30 v o l t s .  
not optimum but very nearly so. The der ivat ives  e '  and e" were pro- 
per ly  reduced t o  zero a f t e r  two switchings, but there  was a s m a l l  under- 
shoot, of t he  order of 1/2 vo l t ,  depending on the  step.  

k l  = 0.66 which gives optimum response f o r  a 
For s teps  d i f fe ren t  from 30 vo l t s ,  t he  response was 

This res idua l  
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e r r o r  was reduced t o  zero i n  a short t i m e  by cha t te r  operation, j u s t  as 
i n  the  case of l i n e a r  switching. For  p rac t i ca l  purposes then, it seems 
uIlc*cI LuL Qbt=p L ~ p u t s  th i s  b w i i c i i i u g  scheme i s  j u s t  as effective as op t i -  
mum switching. 
+ L e +  -PA- -L--  

I f  the motion does not or iginate .on the  e ax i s  i n  t h e  e r ro r  phase 
e ' (0 )  = e"(0) = 0 ) ,  however, the  response with t h i s  scheme space (i.e.,  

i s  not necessar i ly  optimum. It i s  usually osc i l l a to ry  and sometimes 
even unstable. 
the  function k2(e ' )  given i n  figure 32. But adding t h i s  constant made 
the  response t o  motions or iginat ing on t h e  e a x i s  sluggish as i n  the  
example with l i n e a r  switching shown i n  f igure  3 l (b ) .  That i s ,  i n  t h i s  
respect the  present scheme i s  no improvement over l inear  switching. 
This r e s u l t  might have been expected, however, because with only one 
f r e e  coef f ic ien t  i n  the switching function, namely 
f ind  near ly  optimum response only for points  or iginat ing on a given sur- 
face.  In  t h i s  case, t h i s  surface i s  defined by the  t r a j e c t o r i e s  t h a t  
pass through the  e axis.  

This i n s t a b i l i t y  was eliminated by adding a constant t o  

k2, one can hope t o  

If the  fea tures  of the  system inputs are such t h a t  t he  expected 
disturbances usual ly  give motion that or iginates  near t he  e axis,  then 
a scheme such as t h i s  represents a reasonable answer t o  the  problem of 
f inding a r e l a t i v e l y  simple switching function which gives quasi-optimum 
response. Similarly,  i f  the  inputs have another region i n  the  phase 
space where nonchatter motion i s  expected t o  or iginate ,  a d i f f e ren t  func- 
t i o n  k2(e ' )  may be developed. Quasi-optimum response then, seems t o  
have meaning and appl icat ion m a i n l y  when some type of information about 
the  input is  available.  

CONCLUSIONS 

The following r e s u l t s  and cmclusions w2re zlbtained from t h i s  inves- 
t i g a t i o n  of second- and third-order contactor control  systems: 

1. A de ta i led  examination of  a grea t  var ie ty  of system configura- 
t i ons  shows t h a t  during cha t te r  operation, t h a t  i s ,  when the  output i s  
varying slowly enough t h a t  there  i s  a high-frequency hunting due t o  r e l a y  
imperfections, the  resu l t ing  e r ro r  i s  qui te  s m a l l  and depends much more 
s t rongly on the  re lay  imperfections than on the  system configuration. 
In  order t o  make a comparison among several  control  solut ions t o  a given 
problem, one must therefore study responses f o r  which cha t t e r  does not 
occur, the  s tep  input being the  most commonly used. That is ,  the  required 
tolerances on the  re lay  imperfections f o r  a contactor system a re  found 
by studying cha t te r  operation, and the  determination of a control  scheme 
or  switching function i s  made on the bas i s  of s tep response. 
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2. Tile cha t t e r  e r r o r s  due t o  r e l a y  imperfections were found t o  have 
two bas i c  components f o r  t he  second- and third-order systems studied. 
One component i s  a high-frequency o s c i l l a t o r y  e r ro r ,  and the  o ther  i s  a 
direct-current b i a s  e r ro r  which ex is t s  when t h e  driving forces  f o r  posi-  
t i v e  and negative e r r o r  are unequal. The r a t i o  of these  driving-force 
magnitudes i s  a function of t h e  input.  
imperfections occurring separately,  t h e  o s c i l l a t o r y  component of e r r o r  
i s  proportional t o  t h e  square of t h e  imperfection f o r  a second-order 
system and t o  t h e  cube of t h e  imperfection f o r  third-order systems. 
bias errors  depend on lower powers of t h e  imperfections. 

For s m a l l  time-delay or threshold 

The 

3. I n  addi t ion t o  these e r r o r s  t h a t  are c lose ly  associated with t h e  
r e l a y  imperfections, another e r r o r  exists during cha t t e r  operation. 
i s  caused by the  f i l t e r i n g  l ags  t h a t  r e s u l t  i n  forming the  e r r o r  deriva- 
t i v e s  used i n  t h e  switching function. For sinusoidal inputs  t o  a system 
with l inear  switching ( i . e . ,  switching according t o  a l i n e a r  combination 
of t he  error and i t s  der ivat ives)  it was found t o  be a t  t he  input f re-  
quency and was explained by using an equivalent l i n e a r  system. Applying 
t h e  l a w  of superposition t o  t h i s  equivalent l i n e a r  system, t h e  equivalent 
t r a n s f e r  function becomes va l id  f o r  general  inputs  t h a t  give cha t t e r  
operation. This l i n e a r  t r ans fe r  function depends only on the  f i l t e r  
c i r c u i t  constants and the  coef f ic ien ts  i n  the  l i n e a r  switching function, 
while t h e  coef f ic ien ts  of t he  d i f f e r e n t i a l  equation of t he  controlled 
process determine the  input l imi t a t ions  f o r  which cha t t e r  occurs. 

It 

4. Most of t h e  work mentioned above w a s  done on systems with l i n e a r  
switching, which were found t o  give qui te  good response. 
g rea t  deal of  work has been done by various people i n  recent  years on 
optimum contactor systems. These systems give the  minimum response t i m e  
f o r  s t e p  inputs and are therefore  superior t o  systems with l i n e a r  switching 
f o r  such inputs. For a second-order system, t h e  cptimum switching func- 
t i o n  i s  a curve i n  the  e r ro r  phase plane which i s  r e l a t i v e l y  easy t o  bu i ld  
i n t o  a system. For a third-order system, however, t he  switching function 
required to  give optimum response determines a surface i n  t h e  three-  
dimensional phase space and i t s  r e a l i z a t i o n  would be qui te  expensive and 
cumbersome i n  an ac tua l  i n s t a l l a t ion .  To determine how much i s  l o s t  by 
going t o  l inear  switching i n  order t o  avoid t h i s  d i f f i c u l t y ,  t he  s t ep  
response of a third-order system with two complex roots  was studied i n  
d e t a i l  with an analog-computer simulation. The r e s u l t s  show t h a t ,  f o r  
c e r t a i n  ra ther  wide ranges of combinations of na tura l  damping of t he  
controlled process and s t ep  input amplitude, t he re  i s  very l i t t l e  d i f f e r -  
ence between optimum and l i n e a r  switching response. For example, with a 
na tura l  damping r a t i o  of 5 = 0.3, the  maximum difference between l i n e a r  
and optimum switching response time over a wide range of s t e p  inputs  w a s  
about 10 percent. Also, the  e r r o r  during t h i s  last  10-percent i n t e r v a l  
of t i m e  i s  very small so t ha t ,  i n  many p r a c t i c a l  applications,  t he re  i s  
no s ignif icant  difference between l i n e a r  and optimum switching response. 

However, a 
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For t h e  case where < = 0, the difference between optimum and l i n e a r  
s v i t c h b g  response i s  more s ignif icant ,  but i n  t h i s  case it i s  possible 
t o  form a quasi-optimum switching function which requires a function 
generator using one ra ther  than two independent variables.  
gives very nearly optimum response for a wide range of s t e p  inputs but 
i s  unsat isfactory f o r  s tep responses t h a t  start with l a rge  i n i t i a l  veloci ty  
o r  acceleration. It i s  suggested that other quasi-optimum schemes be 
investigated i n  t h e  future  which give nearly optimum response f o r  motion 
not s t a r t i n g  at rest. 

This function 

Stanford University, 
Stanford, Calif.,  December 14,  1957. 
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APPENDIX A 

COMPARISON OF TWO SWITCHING-FUNCTION ARRANGEMENTS 

Consider two control systems whose equations are 

y" + 2Dy' + y = 0.625 sgn e + 0.375 sgn e' 

and 

y" + 2Dy' + y = sgn(e + ke') ( 5 )  

It will be shown here that during chatter operation and in response 
to step inputs, equation (5) gives a response which is superior to that 
of equation (Al). From this, it can be concluded that it is more advan- 
tageous to switch according to equation (15) than (14). Full-saturation 
values are used as coefficients on the right-hand sides of equations (Al) 
and (5) while the driving coefficients in equations (13) and (14) or (15) 
depend on y and y'. It was stated in the main text that it is better 
to use the full-saturation quantity as the driving coefficient; therefore, 
it is valid to use the simpler expressions of equations (Al) and (5) for 
the comparison here. 

The coefficients used in the right-hand side of equation (Al) are in 
the same ratio as those found to give good response in reference 1 by 
using equations (13) and (14). The coefficients' sum was set equal to 

I unity so that equations (Al) and (5) would have the same saturation value. 

Consider first the comparison of these two equations during a region 
of satisfactory response. For simplicity, let the input x = 0. Let the 
relay delay for each system be TR = 0.01. 
equation (Al) can be computed using the method presented in reference 1. 
A plot of the resulting limit cycle is shown in figure 35.  The maximum 
error for this limit cycle is e = 0.0017. With the same value of time 
delay, the chatter error for equation (5) is determined using equa- 

The error limit cycle for 
I 

l tion ( 3 8 )  with k = 0.3: 

= q1) (0 .01)2 
ernaxT 2 

= 0.0000517 l2 0.3 - ?(0.01) 1 

0.3 - 0.01 
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This e r ro r  i s  an order of magnitude smaller than the maximum e r ro r  of 
0.0017 found f o r  equation (All and it can be cunciU&d that & c r k g  
regions of cha t te r  o r  sa t i s fac tory  response a system which switches a 
single quantity according t o  sgn(e + k e ' )  
switches two quant i t ies  according t o  the sign cf e and e '  separately.  

i s  superior t o  a system t h a t  

A comparison of these equations for response t o  d iscont inui t ies ,  
such a s  a s tep input, shows equation ( 5 )  t o  be superior i n  t h i s  respect  
a l so .  Equation ( A l )  i s  constructed so t h a t  no force reversals  can occur 
u n t i l  the  e r ror  changes sign, but for equation ( 5 )  the  driving force 
reverses a t  some time before the  error passes through zero and hence the  
veloci ty  a t  zero e r ror  i s  decreased. 
amplitude the  veloci ty  w i l l  be zero when the  e r ror  becomes zero and the  
response time w i l l  be optimum. 
the phase-plane t ra jec tory  in te rsec ts  the switching l i n e  a t  the same 
point a t  which the switching l i n e  in te rsec ts  t he  optimum switching curve 
a s  given i n  reference 4. 
optimum, it i s  f a s t e r  than tha t  given by equation (Al) because m a x i m u m  
torque i s  applied q t  a l l  times while equation (Al) applies only one- 
quarter of  the maximum torque for those quarter cycles where the , abso lu te  
value of t he  e r ro r  i s  decreasing. 
occur before the e r ro r  passes through zero, a s  w a s  mentioned above. 

In fac t ,  fo r  one pa r t i cu la r  s tep  

This i s  the  value of the  s tep a t  which 

Even i f  the response of equation ( 5 )  i s  not  

Also, torque reversals  f o r  equation ( 5 )  



64 

APPENDIX B 

SEMIGRAPHICAL METHOD FOR F'INDING C H A W  ERRORS 

In  the section "Approximate Expressions fo r  Relay Chatter ETrors'' 
a semigraphical method was b r i e f ly  described f o r  integrat ing the  simpli- 
f i ed  error d i f f e r e n t i a l  equation t o  f ind  the  cha t te r  e r rors .  The reader 
who has no t  had much contact with the  methods of strength of mater ia ls  
w i l l  perhaps appreciate the more de ta i led  discussion of t he  s teps  
involved i n  f inding the  e r ror  by t h i s  method given herein. 

W 
1 
1 
0 

Second-Order Time-Delay Imperfection 

The d i f f e r e n t i a l  equations which give r i s e  t o  cha t te r  e r ro r s  a re  

e'' = a1 i f  e + ke' < 0 } (B1) 
e'' = -a2 i f  e + ke '  > 0 

with the s t ipu la t ion  tha t  the device which performs the  operation 
sgn(e + k e ' )  has a symmetrical t i m e  delay TR. Figure 36 shows the  
graphical construction of the cha t te r  e r ro r  and i t s  der ivat ives  fo r  
t h i s  equation. I n  order t o  develop these p lo ts ,  r e c a l l  t h a t  the  chat- 
t e r  errors  resu l t ing  from equations (Bl) are  periodic and therefore e 
and i t s  derivatives must repeat i n  each cycle. I f  t i m e  i s  measured 
from the  s t a r t  of i n t e rva l  T1, the  per iodic i ty  requirement on e '  i s  

e ' ( 0 )  = e ' (T1 + T2) (B2) 

o r  

e" dT = 0 
loT" 

Graphically, equations (B2) and (B3) indicate  t h a t  the  per iodic i ty  
requirement applied t o  e '  
un3er the  e" curve should be zero. This means t h a t  a l T 1  = a2T2. 
Similarly,  the per iodici ty  requirement applied t o  e i s  

i s  equivalent t o  requiring t h a t  the  net area 
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That is, the net area under the e '  curve must also be zero. In fig- 

satisa this condition. 

ure 36 an integration constant of - 1 a1T1 must be added to e' to 

The only unknowns remaining are the integration constant for e and 
the period of the motion. 
quantities are the switching criterion 
the times indicated by the broken lines in figure 36 which are 
onds before the actual switch points. In order to apply this condition 
in the first interval the error is first expressed by choosing the left 
side of the interval as the time origin: 

The two equations necessary to find these 
e + ke' = 0 to be applied at 

TR sec- 

e = 1 alT2 - - 1 alT1T + C 
2 

The switching criterion is then 

By substituting equations (B5) and (B6) into equation (B7) one obtains 

C 

Choosing the 
the error in this 

time origin at the beginning of the second interval, 
interval is 

1 
2 

e' = -a2~ + - a2T2 
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The integration constant C must be the same in both interval TI 
’I 

and T2 
odicity condition imposed on e is not affected. 

(as implied in equations (B5)  and (B9)) in order that the peri- 

The switching equation is 

which, on substitution of equations (B9)  and (BlO) ,  becomes 

Recalling that 
solved for C and T1 as 

a2T2 = alT1, equations (B8) and (B12) are immediately 

and 

To find the peak error in the first interval, the error derivative 
of equation (B6) is set to zero and the time at peak error is 

Similarly, equation (B10) is set to zero to find the time at peak 
error in the second interval (remembering, of course, that this time is 
measured from the start of the second interval): 

If these times are substituted into equations (B5)  and (B9), respec- 
tively, and m is defined by 

m = al/a2 
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the e r r c r ~ .  are given by equations (43) : 

Third-Order Threshold lnrperfection 

Although the  semigraphical method f o r  finding cha t te r  e r r o r  f o r  a 
second-order system i s  not much of am a i d  over j u s t  s t r a igh t  subs t i t u t ion  
of i n i t i a l  conditions of t h e  motion, i n  the  third-order case it i s  a very 
d e f i n i t e  help i n  t h a t  it points  the way t o  a systematic solut ion of what 
would be e ight  simultaneous equations i f  one were t o  proceed along t h e  
l i n e s  of formally matching end conditions. The simplified third-order 
equations which give r i se  t o  chat ter  o sc i l l a t ions  a r e  

i f  e + k l e '  + k2e" < 
( B18 1 e"' = -Ng 

e"' 
= N1 

i f  e + k l e '  + k2e" > 0 

where N1 and N2 are pos i t ive .  The cha t te r  occurs because t h e  device 
which performs t h e  operation 
operation E, which i s  assumed symmetric i n  the  pos i t ive  and negative 
d i rec t ions .  
imperfection i s  shown i n  f igure  24. Notice t h a t  again t h i s  figure i s  
broken up i n t o  i t s  component par t s  t o  f a c i l i t a t e  integrat ion.  
repeated p l o t  of e gives a composite figure. The ordinate a t  any 
point  f o r  t h e  other p l o t s  must be taken as  the  sum of  the  ordinates  of 
each curve i n  tha t  p l o t .  The procedure i n  going from e"' t o  e" t o  e '  
follows exactly as tha t  i n  going from el' t o  e '  t o  e i n  t h e  second- 
order case except t h a t  t he  constant of integrat ion of e '  here i s  found 
by imposing the  condition of per iodici ty  on e. That i s ,  i n  order t o  
make t h e  in tegra t ion  of e '  add up t o  zero a t  t he  r igh t  side,  a constant 

sgn(e + k le '  + k2e") has a threshold of 

The graphical integrat ion of equations (B18) with such an 

Only the  

N l T l  of --&TI- - T2) had t o  be added t o  e ' .  Going through t h e  s teps ,  t h e  

value a t  t h e  r igh t  s ide of curve ( 3 ) ,  which i s  t h e  in t eg ra l  of curve (1) , 
i s  
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Similarly, t he  value of curve (4), which i s  t h e  i n t e g r a l  of curve ( 2 ) ,  a t  
t h e  r igh t  s ide  i s  

h4 = - L 4 NITl(T1 + T2)2 ( B20 ) 
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Curve ( 5 )  i s  a t r i a n g l e  t o  be added t o  curves (3) and (4) such t h a t  a t  
t h e  r igh t  s ide  

h 3 + h 4 + h 5 = O  

Solving equation (B21) one f inds  t h a t  

h5 = - NIT1(T1 - T2) (T1 + T2) 
12 

The slope of t h i s  t r i a n g l e  i s  a ( T 1  N T  - T2) which i s  t h e  in t eg ra t ion  

constant fo r  
12  

e ' ,  shown by l i n e  (6) i n  f igure  24. 

A s  i n  t h e  second-order case, t h e  only unknowns remaining a r e  t h e  
integrat ion constant C 1  f o r  e and t h e  period of t h e  motion. These 
a r e  found by imposing t h e  switching c r i t e r i o n  a t  the  beginning and end 
of i n t e rva l  T1.  

and 

(e + kle' + k2e") = E 7=T1 

where, from curves ( 3 ) ,  (4), and (5) ,  e i s  given i n  t h i s  i n t e r v a l  by 
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U s h g  eqiiation (B25), equations (B23) and (B24) become 

Adding equations ( ~ 2 6 )  and (B27), the in tegra t ion  constant 
immediately t o  be 

C 1  i s  found 

c1 = - 
24 

Also, r e c a l l  that t h e  per iodici ty  condition on e'' i s  

If equation ( ~ 2 6 )  i s  subtracted from equation (B27) and t h e  result com- 
bined with equation (B29), one obtains an equation f o r  TI: 

In t h i s  equation n 
N 1  < N2 and in t e rp re t  the  r e s u l t s  accordingly), E i s  an imperfection 
which i s  made as s m a l l  as possible fo r  a pa r t i cu la r  i n s t a l l a t ion ,  and 
although N 1  i s  the  smaller driving term it i s  much greater than E. 

Therefore the  value of TI 
thus supporting the  assumption tha t  t h e  cha t t e r  frequency i s  much higher 
than the  frequency of the  controlled process. Since i s  small, t h e  
f i r s t  term of equation (B3O) may be neglected r e l a t i v e  t o  t h e  second and 
am e x p l i c i t  expression fo r  T 1  can be given: 

i s  always less than 1 (one i s  f r e e  t o  def ine 

found from equation (B30) w i l l  be very small, 



To f ind the peak values of e i n  the in t e rva l  T1, t he  deriva- 
t i v e  e ’  from equation (~25) i s  set t o  zero. The resu l t ing  equation - 
can be solved fo r  Tcr, t he  t i m e  from the  start  of i n t e rva l  T 1  t o  t h e  
peak error :  

Notice that  i f  Tcr i s  t o  f a l l  within the  in t e rva l  T 1  ( t he  only i n t e r -  W 

does not give any r e s t r i c t i o n  on the  general i ty  of t h e  results because 

1 
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v a l  f o r  which the equation appl ies)  then n must be l e s s  than 1. This 
i s  the  reason t h a t  a l l  of the  equations were developed with n C 1. This 

N1 can a r b i t r a r i l y  be defined as the  smaller dr iving force,  and i f  it i s  
applied i n  the  negative driving in t e rva l  a minus sign must be attached t o  
the  error and i t s  der ivat ives  as found here. 

If one develops an equation similar t o  equation (B32) f o r  t he  i n t e r -  
va l  T2, it w i l l  be found t h a t  n must be greater  than 1 i n  order f o r  
t he  peak er ror  t o  f a l l  within the  in t e rva l .  
f a l l  i n  the la rger  time in t e rva l  (during the  application of dr iving force 
N1 

Therefore, both e r ro r  peaks 

i n  the convention used here) .  

When the  values of T~~ of equation (B32) are subst i tuted i n t o  
equation (B25) where 
e q r e s s i o n  f o r  t he  peak e r ro r s  i s  surpr is ingly simple: 

C 1  i s  taken from equation (B28), the resu l t ing  

This equation can be put i n to  a more useful  form i f  
by using equation ( B 3 l )  : 

T 1  i s  eliminated 

Also, i f  equation (~18) i s  derived from a system of the  type given by 
equations (48) and (49), then 



so t h a t  equation (B34) i s  more properly wr i t ten  
4 
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It should be mentioned t h a t  t h e  b ias  term ( the  last  term i n  equation (65)) 
is  not equal t o  the  integrat ion constant 
sion f o r  C 1  i s  absorbed in to  t h e  osc i l la tory  e r r o r  term. 

C1 because p a r t  of the  expres- 

Third-Order Time-Delay Imperfection 

If  the same method f o r  finding chat ter  e r ro r  due t o  t i m e  delay t h a t  
was used i n  the  second-order case i s  applied t o  the third-order case,  t h e  
r e su l t i ng  equations become very cumbersome. Since the  approximations 
made t o  a r r ive  a t  t h e  simplified error d i f f e r e n t i a l  equation given i n  
equation (~18) required tha t  t h e  imperfections be small, it would be w i s e  
t o  seek a more simplified version o f t h e  cha t te r  e r ro r  due t o  t i m e  delay 
tha t  takes advantage of the  f a c t  t ha t  t h e  t i m e  delay i s  small. 
t h i s ,  it w i l l  be assumed from the  s t a r t  tha t  a t i m e  delay can be t r e a t e d  
a s  a var iab le  threshold ( t h i s  i n  i t s e l f  i s  not an approximation). 
Denoting by F the argument of t h e  switching f'unction, i t s  t i m e  deriva- 
t i v e  i s  

To do 

F' = e '  + kle" + k2e'" (68 )  

A t  the in s t an t  before a switch point from "2 t o  N1 ( i .e. ,  j u s t  before 
the s ta r t  of i n t e rva l  T i )  t h i s  becomes 

The values of e ' ,  e", and e"' used were taken d i r e c t l y  from f igu re  24. 
T h i s  i s  va l id  because the  e n t i r e  development of figure 24 except t h e  
evaluation of 
delay imperfections. That i s ,  the  switching equations are not appl ied 
unti l  one comes t o  t h e  point  of evaluating TI and C1. 

C1 and the period applies equally t o  threshold o r  time- 

The approximation made above w i l l  el iminate the  t e r m  corresponding 
t o  

k - ~ T R  1 

k - TR 
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which appeared in the second-order case (eqs. (43)). 
values of TR, the forthcoming equations will give a good indication of . 
the chatter error. For larger values of TR the effect of this term 
cam be studied for the case where In this case the chatter 
error can be found by using equation (66) without making the approxima- 
tion in equation (69). 

But for small 

N1 = N2. 

Using the approximate slope of the switching-function argument 
given by equation (69), the corresponding equivalent threshold at the 
start of interval TI is W 

1 

Similarly, the equivalent threshold at the end of this interval is 

Substituting these equivalent thresholds into equation (~26) and (B27), 
respectively, one obtains two equations for C 1  and Ti. Eliminating 
C1, the equation for T1 is 

O r ,  again neglecting the cubic terms, 

T1 = (T)TR l + n  

The equation for C 1  is 

Notice that the first of the two terms on the right-hand side of equa- 
tion (B38) is identical with C1 as given by equation (B28). Also, the 
derivation of T~~ and the accompanying comments apply equally well here 
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because these considerations were rick fcr TI and C1 in general. 
Therefore, the error peaks as given in equation (B33) carry over to 
this case if the addition to C1 that is given in equation (~38) is 
added. That is, 

This additional bias term is due to the unsymmetric equivalent thresholds, 
and drops out, as does the other bias term, if n = 1. Using the value 
of T1 
delay TR are 

given in equation (B37), the peak chatter errors for a small time 

($3$)k$1TR 

Or, for the case where N 1  + N2 = 2N, 

0340) 
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APPENDIX c 

CONVERSION OF AIRCRAFT-PITCHING-MOTION EQUATION 

TO COMPUTER UNITS 

Throughout t he  text ,  the  example used as a third-order control led 
process i s  a simplified equation of t h e  pi tching motion of a missile or 
a i r c r a f t .  This equation i s  

where t i s  r e a l  time, fi i s  a switching function which takes  on the  
values fl, 8 i s  t h e  a i rc raf t - f l igh t -pa th  angle measured from l e v e l  
f l i g h t ,  % 
adjustment mode ( the  more exact equation i s  of four th  order with two 
na tu ra l  frequencies: 
and t h e  phugoid o r  low-frequency mode), and 
veloci ty . ' '  
e f f e c t  of some control  surface on the  motion, and t h e  surface takes  on 
only two posi t ions,  e i t h e r  f u l l  up o r  f u l l  down. In  order t o  make t h e  
equation t h i r d  r a the r  than four th  order,  per turbat ion of l e v e l  f ldght  
had t o  be considered with the  change i n  forward speed neglected.  The 
def in i t ion  of a "runaway veloci ty"  comes from the  observation t h a t ,  i f  
t h e  control surface i s  allowed t o  assume one of i t s  posi t ions f o r  an 
inde f in i t e  length of time, then a f t e r  t he  t rans ien ts  d i e  out,  t h e  a i r -  
c r a f t  f l i g h t  angle w i l l  be changing a t  an angular veloci ty  

i s  the  undamped na tura l  frequency of t he  rapid incidence 

t h e  incidence adjustment o r  high-frequency mode, 
V r a  i s  the  angular "runaway 

The coef f ic ien t  of the  switching function represents  t he  

V r a :  

Vra d e = +  
d t  

I n  order t o  study t h i s  equation on a d i f f e r e n t i a l  analog computer, 
it w a s  decided t o  scale  time and angle so as t o  use a convenient voltage 
range and t o  make the  inherent 
t e r m s  of the na tura l  frequency 
the  dependent machine var iab le  
are 

Y = aye 

delay of the  r e l ays  used very s m a l l  i n  
of t he  machine equation. Defining y as 
and r as machine t i m e ,  t h e  sca le  f ac to r s  

c 
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2nd equation (Cl) becomes 

Or, using primes t o  denote d i f fe ren t ia t ion  with respect t o  T, 

y"' + 2CRy" + Q2y' = -N# 

where 

The parameters N and R could be made uni ty  by making t h e  proper 
adjustments of Q and 9, but it was desired t o  study t h e  e f f ec t  of 
varying % and vra due t o  changing a i r c r a f t  speed and a l t i t ude ,  so 
t h a t  % and 9 were merely adjusted t o  give convenient machine 
u n i t s .  
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APPENDIX D 

OPTIMUM RESPONSE OF SECOND-ORDER SYSTEM W I T H  W I N G  

Optimum response of the  equation 

w a s  discussed b r i e f l y  i n  the  sect ion "Step Response of Third-Order 
Contactor System With Two Complex Roots.'' 
t h i s  equation f o r  s tep o r  ramp inputs,  t he  equation must f i r s t  be changed 
i n t o  an equation f o r  t he  e r ro r  e by subs t i t u t ing '  y = x - e, noting 
t h a t  xt' = 0 and x' = x t o  f o r  a ramp input.  

To f ind  optimum response f o r  

e" + D e '  = Dx', + a$(e,e') ( D 1 )  

To f i nd  the phase curves f o r  equation ( D l ) ,  it i s  f i r s t  transformed i n t o  
a d i f f e r e n t i a l  equation i n  e '  and e by using the  i d e n t i t y  

Equation (Dl) then becomes 

e '  de' + De' = Dxto + a@(e,e ' )  (D3)  de 

or ,  separating var iables  (noting t h a t  $ = Constant over any in tegra t ion  
i n t e r v a l  ) 

e '  de '  -D de = 

D 
e '  - x ' ~  - 

( x t o  + %)de' 
= de '  + 

W 
1 
1 
0 

e ' - x o - -  a$ 
D 
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Equation i-1 \ CG 5e i-n-teerated d i rec t ly  f o r  @ = 1 o r  -1 (one 
cannot in tegra te  over a discont inui ty  in  
t i o n  must be broken i n t o  two p a r t s  i n  order t o  avoid the  s ingu la r i ty  at 
e '  = x ' ~  + (aP/D) 

(if, of coursej . Tne initrgrti- 

so t h a t  

-D(e - eo) = e '  + (xg0 + 22 )loge(-el t x f 0  + d )  e '  < x t 0  + %! D ( D 5 b )  

where eo i s  the  in tegra t ion  constant. 

The zero t r a j e c t o r i e s  fo r  @ = 1 and 6 = -1 a r e  shown i n  f i g -  
ure 37(a) fo r  x t 0  > 0. The so l id  l i ne  i s  f o r  @ = 1 and the  broken 
l i n e ,  f o r  @ = -1. Also shown i n  the same f igu re  are branches on t h e  
o ther  s ide  of t he  s ingu la r i t i e s  a t  All other tra- 
j e c t o r i e s  are curves p a r a l l e l  t o  these and sh i f ted  along the  e a x i s  
according t o  the  in tegra t ion  constant 
t r a j e c t o r y  f o r  (if = 1 i s  found by taking equation ( D P )  with eo eval-  
uated by first se t t i ng  

e '  = x f 0  2 ( a / D ) .  

eo. The equation of the  zero 

e = e '  = 0. The re su l t i ng  zero t r a j ec to ry  i s  

A 1  - e '  
-De = e '  + hl log, 

A 1  

where 

The values of x f 0  given are those values f o r  which the  system w i l l  not 
diverge.  For values of x l0  outside t h i s  range, inspection of equa- 
t i o n  ( D l )  shows t h a t  t he  system w i l l  diverge because the  term containing 
the  switching function no longer determines the  sign of t he  right-hand 
o r  dr iving s ide of the  equation. 

If the scale  f ac to r s  of the  phase-plane axes are changed by A 1  
i . e . ,  e = A 1 5 1  and e '  = 7,1E,-') the  parameter A 1  can be eliminated 

i n  equation (I%) and it becomes 
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-DS, = 5 1 '  + loge(l - Ell) 

Similarly, t he  zero t r a j ec to ry  f o r  
t i o n  (D5a) with eo evaluated by f i r s t  s e t t i n g  e = e '  = 0. 

$ = -1 i s  found by taking equa- 

A2 + e '  
-De = e '  - A2 log, 

A2 

where 

A 2 = & -  D X ' O  
- %x', < -  a 

D D 

Changing t h e  scale  f ac to r s  i n  the  phase plane by 

e '  = A$.2', equation ( D 8 )  becomes 
e = A2E2 and 

-DE2 = E 2 '  - log, 1 + E ( 2 ' )  

W 
1 
1 
0 

Figure 37(b) shows the  ingoing branches of the unmodified zero tra- 
j ec to r i e s  given by equations (D6) and (DS). Bushaw (ref .  4) shows t h a t  
t he  curve made up by these two branches i s  the  optimum switching curve. 
For points above, 
Four types of optimum responses from a r b i t r a r y  points  are shown i n  t h e  
f igure .  But t h i s  switching gives optimum response only f o r  t he  spec i f ic  
value of x t 0  f o r  which it was p lo t ted .  Figure 37(c) shows the  ingoing 
branches of equations (D7)  and (Dg) i n  which the  parameters Al and A2, 
which depend on 
i n  the  same figure, it was necessary t o  take  d i f f e ren t  scale  f ac to r s  f o r  
t h e  posi t ive and negative axes as shown. 
on 
f o r  any ramp input i n  the  range 

@ i s  t o  be taken as -1, and, f o r  those below, (d = 1. 

x t0 ,  have been eliminated. In  order t o  p l o t  both branches 

Since these curves do not depend 
x t 0 ,  operation i n  t h i s  d i s to r t ed  phase plane gives optimum response 

-a /D < x t 0  < a /D .  

The procedure f o r  providing optimum response f o r  an a rb i t r a ry  ramp 
input i s  f i r s t  t o  form the  "normalized" switching curve shown i n  f i g -  
ure 37(c) .  
then be modified by the  scale  fac tor  Al o r  A2, depending upon t h e  

The e r ro r  and e r ro r  der iva t ive  fed in to  t h i s  function must 

loca t ion  of t h e  s t a t e  point .  Since the  choice of scale  f ac to r  i s  not 
important i n  t h e  f i rs t  and t h i r d  quadrants, one may switch t h e  scale 
fac tor  from A 1  t o  A2 according t o  sgn e o r  sgn e ' ,  whichever i s  
more convenient. This scheme a l so  includes s tep  inputs,  of course, as a 
degenerate case where I Al = A2 = a / D .  

c 
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Theoretical 

'I!ABLE I .  - COMPARISON OF EXPERIMENTAL AND TIGDRETICAL SECOND-ORDER 

E x p e r i m e n t a l  

""3 

SYMMETRICAL CHATTER-ERROR AMPLITUDES FOR EQUATION (45) 

r D  = 0.5; a = 40; x = 
L 

0.925 
,035 
.045 
- 055 
,065 
090 
.115 
.165 
.215 
.265 - 315 

k = 0.5 

Theoretical 

0.013 
,026 

.070 

.203 

.045 

.098 

.348 

.843 
1.75 
3 -43 
6.73 

E x p e r i m e n t a l  

0.013 
.023 

, .045 
.072 
095 
.180 
.32 
-70 

1.31 
2.16 
3.18 

k = 0.25 

0.013 
.029 
.050 
.080 
.120 
.266 
.535 

0.013 

.047 

.081 

.120 

.24 

.026 

.47 

Tp23LE 11. - COMPARISON OF EXPERIMENTAL AND 'EEOFE'J!ICAL THIRD-ORDER 

SYMMETRICAL CHA"ER-ERROR AMPLITUDES FOR TWO EXAMPLES 

0.035 
.055 
.065 

0.00057 
.0022 
.0037 
0097 L .0203 

D i v e r g e  .050 
D i v e r g e  

% x p e r i m e n t  A:  x = 0 ;  
y"' = 40 sgn(e + O . 5 O e '  + 0.10e"). 

b E x p e r i m e n t  B: 
Q2y' = 40 sgn(e + 0 . 5 O e '  + 0.10e"); 

x = 0; y"'+ 2(Qy" + 

5 = 0.6; fi2 = 2.79. 

f 

W 
1 
1 
0 
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0.50 
50 

.20 
50 

.527 

.527 

.527 

TABU3 111.- COMPARISON OF EXPERIMENTAL AND 'MEORETICAL CHAT"EX 

BIAS ERRORS FOR THIRD-ORDER SYSTEM OF EQUATION (49) 
2 

)T-TR 0 ;  
[e"' ( T )  + 2{Qe"(T) + Cl e ' (T)  = N1 if (e + kle' + k2e" 

e"' ( 7 )  + 2Sne"(T) + Cl 2 e ' ( T )  = -N2  i f  (e + kle' + k e 
2 '')T-TR ' O; 

0.10 
.10 
.10 
-50 
.10 
.10 
.10 

R 2 = 2.79; ( = 0.6; N 1  = 40; n = 

Values of parameters 

I 

.065 

.115 

Theoretical 
chatter 
bias 

error, B 
(a> 

0.066 
.io6 
.092 

.132 

.167 

.282 

,436 

Experimental 
chatter 
bias 

error, Be, 

0.063 

.092 

.43 
135 

.18 
39 

.105 

"Error B = -(7)(i k l n + 1  - I I ~ ) N ~ T R ~  + - 1 k2( 1 - n)N2TR. 
12 2 

0.003 
.001 

0 
.006 

-.003 - .013 - .lo8 
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TABU I V . -  C W m I S O N  OF LOW-FWQUENCY-ERROR AMPLITUDES FOUND I N  

ANALOG-CaMPUTER SLMULATION WITH THOSE GIVEN BY EQUATION (87) 

FOR SECOND-ORDER SYSTEM WITH x = A sin UT 

y" + y' = a sgn(e + ke'); the following parameter values are 
defined as "normal: 

Tli = 0 - 5  1 
a = 40 volts k = 0.24 
A = 20 volts 
o = l  n 

c 

a A l l  parameters are normal but one listed. 

kA0'1 Tli 
n 
I 

bError amplitude Q = 

\I1 + k202 

W 
1 
1 
0 
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Run 

1 

2 

3 
4 

5 
6 
7 
3 
9 

4 Values of 
parameters 

(4 
Normal 

Tli = 0.102 
n 
kl = 1.05 
kl = 0.263 
w = 0.407 

A = 10 
k, = 0.213 
k2 = 0.588 

(I) = 0.628 

L 

TABU V.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN 

Theoretical  
e r r o r  

amplitude, 
Q 

(b 1 
0 350 

,686 

- 570 
.188 
.0898 
.211 
175 

,380 
.488 

ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY 

Experimental 
e r r o r  Error 

amplitude, - %x difference,  
percent 

Qex 

0.35 0 0 

.65 .036 5 

54 03 5 
.184 ,004 2 

.08 .0098 11 

.206 .005 2 
17 ,005 3 

.362 .018 5 

.436 052 11 

FOR A THIRD-ORDER SYSTEM WITH I N P U T  

x = A s i n  UT 

The following parameter values are defined as "normal:" [ 
n2 = 2.79 

N = 47 

k l  = 0.527 
k2 = 0.079 f o r  5 = 0.6 E T l i  = 0.052 

n 

u) = 01815 t ab le  V ( a )  
A = 20 k2 = 0.10 fo r  XT2-i = 0.292 1 tab les  V(b) and V(c) m 

( a )  System y"' + 25Qy" + = N sgn(e + klg' + k2e") with only x' 
f i l t e r i n g ;  

aAll parameters a re  normal but one l i s t e d .  
hi-  

i(l - kp2):! + kl 2 2  w 
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TABLE V.- COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND IN 

ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY 

FOR A THIRD-ORDER SYSTEM WITH INPUT 

x = A sin CUT - Continued 

(b) System y"' + 25fiy" + !$y' = N sgn e + kle' + k22') ( with only x" W 

1 

2 

3 

4 
5 
6 

7 
8 
9 
10 
11 

filtering; theoretical errors given by equation (98) 

Values of 
parameters 

(4 
Normal 

T2i = 0.192 
m 

T2i = 0.392 
m 

w = 0.407 

k = 1.05 

kl = 0.263 
k = 0.25 

U) = 0.628 
1 

2 
k2 = 0.50 

A = 10 
Normal 

The ore t ical 
error 

mpli tude, 
Q 
(b 1 

0 3 0 8  

,203 

.413 

.0383 

,250 

-330 
.844 

1.995 
.154 
.308 

.141 

Experimental 
error 

amplitude, 
Qex 

0.294 

.194 

.388 

0375 
.143 
,264 

-295 
-77 

1.74 
-153 
.296 

a 
All parameters are normal but one listed. 

1u 'Error amplitude Q = , 

Q - Qex 

0.014 

.009 

.025 

.om8 - .002 
- .014 

035 
.074 
255 
.001 
.012 

Error 
difference, 
percent 

4.5 

4.3 

6.0 

2.0 
-1.4 
-5.6 
10.6 
8.8 

12.8 
.6 

3.9 

1 
1 
0 

c 
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1 
1 
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, 

- 

3un 

- 
1 

2 

3 

4 

5 
6 
7 
8 
9 

i n  

11 
12 

&V 

- 

TABLE V. - COMPARISON OF LOW-FREQUENCY-ERROR AMPLITUDES FOUND I N  

ANALOG-COMPUTER SIMULATION WITH THOSE GIVEN THEORETICALLY 

FOR A THIRD-ORDER SYSTEBI WITH INPUT 

x = A s i n w  - Concluded 

( c )  System y"' + 2SRy" + i$yl = N sgn(e + klg' + k2T') with both 
x' and x'' f i l t e r i n g ;  theoret ical  e r ro r s  given by equation (102) 

Values of 
parameters 

(4 
Normal 

.E T 2 i  = 0.192 
m 

T2i = 0.392 
m 

Tli = 0.152 
n 

LU = 0.407 

kl = 1.05 
kl = 0.263 
k2 = 0.25 
k2 = 0.50 

Normal 
A = 10 

LU = 0.628 

Theoretical  
e r r o r  

amplitude, 
Q 
(b 1 

0.496 

.422 

.589 

1.105 

.io3 
,265 
.654 
.368 
.974 

.496 
2.21 

.248 

Experimental 
e r ro r  

amplitude, 
&ex 

0.53 

.455 

.61 

1.12 

.lo7 

.276 

.666 

.38 

.91 
1.92 

-33 
.26 

Q - &ex 

-0.034 

- -033 

- .021 

- .015 

- .004 - ,011 - .012 

- .012 
.064 
* 29 

- .034 - .012 

Error  
difference,  

percent 

-6.8 

-7.8 

-3.6 

-1.5 

-3.9 
-4.1 
-1.8 
-3.3 
6.6 

i3 .1  
-6.8 
-4.8 

a All parme te r s  are normal but  one l i s t e d .  

Error amplitude Q = 
b 

r 
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I' 
-1 

(a)  k >  0. 

I' 

I 0- ' / I /  0 
I, 

= o  

kW'= 0 

I 

Cycle 

(b) k < 0. 

Figure 1. Transient response i n  phase plane f o r  equation (1). 
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Figure 2.- Motion a f t e r  end point A (see eq. (1) w i t h  k > 0). 

Controlled I'rocess 

1 + kp 

1 Switching Computer 

Figure 3 . -  Second-order followup system. 
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Figure 4.- Ser ies  t r ans fe r  functions used by Kochenburger. 

1 

Irnaginary 

Real 

Figure 5.- Frequency response i n  complex plane. Arrows drawn i n  direc-  
t i o n  of increasing u) and a. 
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-'-< Switching Computer 

Figure ,6. - Varied-coeff icient scheme. 

Figure 7.- Response near origin where a more complicated switching func- 
tion can be replaced by a straight line. 

. 
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Figure 8.- Phase-plane meshwork near o r ig in  f o r  various values of a 
and b. 
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(b ) Time -delay imperfect ions ; 

Figure 9.- Approximations of one-half of the error limit cycles resulting 
from threshold and time-delay imperfections of the type of equa- 
tion (18). Figure not drawn to scale. 
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(a)  Assumed wave form f o r  thres-  ( e )  Assumed wave form f o r  t i m e -  
hold e r ro r s .  delay e r ro r s .  

(b )  Actual wave form f o r  thres- (d) Actual wave form f o r  time- 
hold e r ro r s .  . delay e r ro r s .  

Figure 10.- Symmetrical chatter-error wave forms f o r  a second-order 
system. 
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0 80 120 160 200 

Time delay TR, Millisec 

Figure 13.- Comparison of t heo re t i ca l  and experimental cha t te r  e r ro r  f o r  

a second-order system. e = - aTR ; k = 0.5. 
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(a) Assumed wave form f o r  thres- ( c )  Assumed wave form f o r  t i m e -  
hold e r rors .  delay e r rors .  

(b) Actual wave form f o r  thres- (d) Actual wave form f o r  t i m e -  
hold e r rors .  delay e r rors .  

Figure 14.- Symmetrical chstter-error wave forms f o r  third-order systems. 
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Figure 16.- Sketch of one cycle of cha t te r  e r ro r  f o r  a third-order 
system. 
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Figure 18.- Bias e r ro r  fo r  third-order system of equation (47) with 

10, kl = 0.50, 5 = 0.10, R 2 = 2.79, 5 = 0.6, N1 = 40, N2 = 

and TR = 0.055. 

Figure 19.- Response of second-order system y" + y'  = b sgn(e + 0.24e') 
t o  input x = 20 s i n  T. 
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(a) No f i l t e r i n g  on x’ or  XI’. 

(b) 1 Tli = 0.10. 

n 

Figure 20.- Response of third-order system of t a b l e  V ( a )  t o  
x = 20 s i n  0.637. 
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(a) x = 15.0 cos(0.446~). (b) x = 1.00 COS(2.837). 

(c) x = 13.0 co~(O.446~) + 1.00 cos(2.83~). 
Figure 21.- Response of third-order system of tab le  V(a) with kl = 0.10 

and 7 Tli = 0.10 t o  sum of two sinusoids. 
d 
n 
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(a) x = 15.0 sin(O.446~). (e) x = 2.0 sin(2~). 

(f) x = 15.0 sin(O.446~) + 2.0 Sin(2T). 
Figure 21.- Concluded. 

0 E 



a3 
N 

0 

rl 
0 

9 

0 

N 

9 

rl 

(u 

rl 

co 

0 

N 
3 

I 

aJ 
k 
P 

i 

2 s 
n 
l- 
3 

E: 
0 
d 
-P 
(d 
? 
CF 
aJ 
% 
0 

W 

8 +J m x m 
k 

3 
P 

5 
a 
k 
d 

% 
0 

k 
0 
k 
k 
0)  

t-4 
td 
-P 

8 k 
B aJ 

a 
2 
z 

2 

t-4 

d 
-P 
aJ 
k 
0 

e 
I 

cu cu 

$ 
ho 
d 
R 

I1 

C 

In 
rl 

0 
11 

d cu 

cu 
.* 

E.1 

*.r 
0 
II 

.rl 
t-4 e 

.* 
b o  
3 c u  

II Li a 4 :  

t 



106 

\ 

Figure 23.- Comparison curves for breakdown study. 
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Figure 24.- Graphical construction of cha t t e r  e r r o r  due t o  r e l a y  imper- 
fec t ion  f o r  third-order system. For explanation of numbers i n  paren- 
theses  see t e x t .  
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Figure 25. - Simple second-order example of optimum switching. 



Figure 26.- Optimum switching for  simple second-order system of 
figure 25. 
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Figure 27.- Zero trajectory for third-order system of equation (130). 
Equations of zero trajectory: 

I t  2 (%) + (el T v,,)* = v,: 
Compare equations of zero trajectory 

with parametric eqwitions of cycloid 

v t  
y = vot - r sin 0 

x = r - r cos lot 

where r + b  and vo+Vra. 
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(a) Q2 = 2.79; Q2Vra = 47.3 Volts. 

Figure 28. - Linear switching-function coefficients of equation (47) that 
give optimum response to step inputs. 
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Figure 29.- Optimum response times of equation (127) for step responses 
s t a r t i n g  from r e s t .  
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Step  he igh t ,  v 

(b) f12 = 1.35; = 23.2 vol t s .  

Figure 29.- Concluded. 
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Figure 30.- Comparison of optimum and l i n e a r  switching response times f o r  

equation (127) . 
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Figure 30.- Concluded. 



( a )  Response t o  60-voit s tep.  

c 

.. . . . .  

(b)  Response t o  20-volt s tep .  . 
Figure 31.- Response t o  s tep  inputs of a system described by equation (47) 

with 5 = 0 and kl and k2 optimized f o r  a 30-volt s tzp.  
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Figure 33.- Sketch of two views of optimum step-response t r a j e c t o r y  for  
equation (130) . 
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Figure 34.- Schematic diagram of c i r c u i t  which forms k2(e ' )  t o  give 
quasi-optimum response. 
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Figure 35.- Chatter e r ro r  l i m i t  cycle f o r  equation (Al) with TR = 0.01. 
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Figure 36.- Graphical construction of chatter error due to time delays 
for second-order systems. For explanation of numbers in parentheses 
see text. 
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(a) Zero trajectories for 
for xl0 > 0. 

= 1 and 

Y- 

e 

e‘ 
_c 

c 
-1 (b )  Ingoing branches of 

unmodified zero tra- 
jectories of equa- 
tions (D6) and (DS) . 

(e) Ingoing branches of modified zero trajectories of equations (D7) 
and (D9). 

Figure 37.- Optimum switching lines for second-order system with damping. 
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